Рубкология

Весь нынешний август я шароебился по разным кустам занимаясь оценкой успешности лесовозобновления на сплошных вырубках юго-запада Ленинградской области. Суть работы сводилась к следующему: я вылезал из теплой машины под бесконечный дождь, цеплял к рюкзаку на манер навесного оборудования трактора обычную штыковую лопату, в «ливчик» комбинезона засовывал планшетку с бланками, сжимал посильнее рукоять здоровенного тесака для рубки медвежьих бошек и в позе супермена из армии Батьки Махно погружался в дремучий кустарник, где писал разную технологическую ебанину и вонзал в раскисшую землю сотни палок с красными лентами.
102_4624

К большому сожалению, заказчик этого безумия находился в стадии перманентного параноидального прихода и всячески настаивал на конфеденциальности методов и результатов работ. Что-ж, не будем посягать на его законное право страдать херней. К тому же, говоря по правде, интересного там мало: банальные учеты и типовые анализы: какой-нибудь дискретный анализ и среднее с вариацией. Другим словом, беспросветная тоска. Я же хочу рассказать вам о настоящем веселье.

Итак, друзья, тушите свет, зажигайте свечи, разбрасывайте по полу каштаны. Наливайте себе стакан до краев и располагайтесь удобнее, ибо во многом знании много печали, но памятуя про in vino veritas едва ли найдется тот, кто не заметит очевидного парадокса в измышлениях старинных мудрецов. Однажды придет и мой Мелет, сын Мелета, пифеец, но пока, дрожание рук походит на кривую судьбы Агриппины младшей, между Нероном и Тиберием велик соблазн немного повертеть на граненом стакане кровавый сапожок. Веселье, друзья, конечно же веселье служит нам путеводной нитью этого вечера! Все начинается с того, что раз в полторы недели вы до утра обрабатываете вымокшие бланки с кровавыми пятнами. Пеленг такой-то, широта такая-то, долгота такая-то, фото номер N. Три березы, две елки ноль пять, елка полтора, осина, две рябины, сосна ноль пять. Пишите, чертите, вслушиваетесь в свой голос с диктофона, просматриваете отснятые файлы. Что-бы не заснуть, выходите на улицу покурить и вновь возвращаетесь. Веселитесь изо всех сил.

102_4609

А через несколько часов, едва небо начнет светлеть, двери электрички закрываются и вы наслаждаетесь красотой и величием заоконных пейзажей:

102_3538
Чем дальше, тем пейзажи все красивее и величественнее
102_3523
И конечно-же, все веселее и веселее
102_3571

Но все проходит, стоит лишь выйти на пробу. Встанешь на первую вешку, оглянешь взором предстоящий фронт, сплюнешь и произнесешь благословенное «ёб твою мать». А из динамика телефона тебе отвечает лектор Петухов. «Давайте начнем!»: говорит он. А действительно, давайте начнем! И с этими словами ебнешь свою профилактическую соточку, затянешься поглубже чем бог послал и выпуская дым, начинаешь орудовать тесаком, вязать ленты, писать и бесконечно фотографировать.

102_4755

Прежде чем вы решитесь ввязаться в это дело, нужно понимать куда именно вам предстоит ехать. Как найти вырубки нужного типа леса, возраста, площади и транспортной доступности? Если вы сможете найти где-то карту с такими данными — честь вам и хвала. Но практика показывает, что самые ценные инструменты, для изготовления которых отводятся месяцы предполевых работ всегда приходится собирать в последний момент на коленке. Другими словами, нам нужно составить такую карту самому, иначе все у нас пойдет через жопу. Погнали?!

Карта рубок. Что есть рубки с точки зрения дешифрирования? правильно, рубки есть видоизмененный лес. Значит не ебем себе мозг, а прямо так, английским по белому пишем в поисковой строке браузера: «forest change map». По первой же ссылке попадаем на известный проект Global Forest Change:

111

Классная штука этот GFC. Спецы из Мэрилендского университета, Гугла и Геологической службы США, обработав огромное количество ландсатных снимков, выдали в качестве результата данные по изменению лесного покрова за период с 2000 по 2012 гг. Это то что нам надо, скачиваем данные на нужный нам регион в формате GeoTiff.

Теперь этот слой нужно разнести по типу леса, возрасту, площади и транспортной доступности. Сразу скажу, что первое — больше из области фантастики, ибо до тех пор, пока мы используем в качестве лесной типологии псевдонаучные фантазии времен раннего палеолита, никакой хитрый алгоритм применить не удастся. Да в этом и нет особой нужды, ибо как вы понимаете, основная доля всех рубок представляют собой кисличники, реже свежие черничники. Я бы на месте лесозаготовителей тоже всякого рода долгомошники вертел на харвестере, ибо рубль выберешь, рубль двадцать в гать утопишь.

102_4492

Но зато разбиение данных по остальным параметрам уже дело техники. Для начала векторизуем наш растр в QGis:

222

Из производного шейпа аттрибутивной выборкой по возрасту рубки извлекаем новый полигональный слой. Далее, через калькулятор полей считаем площадь каждого полигона, и удаляем слишком крупные и мелкие полигоны. Остается только исключить рубки, находящиеся в самых недоступных ебенях. Но это тоже не космос: скачиваем через overpass дорожную сеть OpenStreetMap, Строим вдоль проезжих дорог буферную область, доступную для пешего подхода и после этого удаляем все полигоны рубок, которые не пересекаются полученным буфером.

Все, слой готов. Экспортируем его в kml и  SAS.Планету, настроив подходящий вид:

333

Основной недостаток такого метода в том, что в выборку попадают рубки вытянутой и неправильной формы, совершенно неудобные для закладки учетных площадок. Кроме того, помимо рубок, встречаются еще естественные усыхания, пожары, ветровалы и подтопления. Последние, благодаря бобрам, особенно часто. Редкостные, скажу я вам, мудаки, эти бобры. Мало того, что эти пидоры столько леса хорошего затопили, так они еще и невкусные как водоросли. Их что жарь, что вари — все какая-то поебень получается.

Загружаем данные в навигатор и вперед — рубить ветки, месить говно и давить фиолетовые грибы

102_3089

Можно ли размещать площадки на волоках и в каналах? С одной стороны это тоже часть территории. С другой стороны, размещение учетных площадок в таких местах вносит не отслеживаемую погрешность. Вопрос можно поставить даже шире: уместно-ли рассматривать общие показатели восстановления для территории с комплексными видами нарушений? Правильно, неуместно. Пасеки — отдельно, волока — отдельно, земля — крестьянам, мудаков — нахуй.

102_4557Существует несколько принципов, которыми следует руководствоваться приступая к любым полевым работам. Конечно-же, следует помнить о нарастании коэффициента обалдевания: с каждым разом вы, вне зависимости от вашей старательности, будете выбирать наиболее легкие для описания площадки. Это неизбежно приводит к систематическому занижению результатов на 5-15%. Избежать этого можно путем формализации процедуры выбора точки описания: например подобно геоботаникам кидать дрын, служащий, после падения, стороной учетной площадки. Можно и протягивать на определенное расстояние рулетку по выбранному пеленгу. Но этот подход работает плохо даже на рубках трехлетней давности

102_3350

Как не вымеряй расстояние на вырубке по рулетке, все равно будет лажа. Либо закрадывается ошибка за счет изгибов рулетки, либо за счет пробики створов колоссально возрастает трудоемкость. Не ебите себе мозг, отмеряйте расстояние шагами, контролируйте себя по навигатору и не забывайте про коэффициент обалдевания.

Любые поточные полевые наблюдения кроют в себе опасность смещения данных. Стоит вам пропустить наблюдение на одной из учетных площадок, как ценность всех дальнейших наблюдений оказывается равной нулю. Но каждый раз заполнять чек-лист слишком затратно по времени. Поэтому мой вам совет: синхронизируйте все что только возможно. И немедленно. Если вы стоите на восьмой учетной плошадке, пусть номер вашей точки в навигаторе будет «508», а номер фотографии «18». Организуйте все так, что-бы пропущенное наблюдение моментально бы искажало конструкцию данных.

Нет ничего более тупого чем бесконечно записывать номера фотографий. Если вы синхронизировали нумерацию наблюдений, то вам стоит записывать только номера фотографий в точках контроля и номера ошибочно сделанных снимков. По завершению цикла наблюдений, просто суммируйте количество фотографий для дополнительной проверки. Ну и конечно же не забывайте про снимки-хуимки.

Очень часто люди не могут отделить фотографии одного ряда наблюдений от другого. Ну а хули, спрашивается вы фотографировали площадки на одной пробе, потом перешли через дорогу и не сделав ни одного лишнего кадра приступили к фотографированию площадок другой пробы? Естественно, потом при сортировке снимков приходится морщить ум и сравнивать время и содержимое кадра. Делайте проще, перед началом каждой пробы делайте несколько снимков-хуимков: фотографируйте какую-нибудь дичайше специфическую ебанину, например свой еблет, или рукав, или бланк с описанием. Помимо упрощения сортировки снимков, это позволит вам получить психоделический набор ебанутых фотографий для плаката «Я в двадцать пятый раз спрашиваю, что это за хуйня?»

hand

Стоит ли говорить о том, что на пробе вы записываете не количественные, а качественные показатели? Правильно не стоит. Потому что любые количественные измерения есть суть более формализованные качественные. И если в одной графе бланка записано «87 берез», а в другой «92 березы», только безумец будет утверждать, что во втором наблюдении на пять берез больше. Разумный человек сразу понимает, что на обоих площадках одинаковое количество подроста, чуть меньше сотни стволиков, но определенно больше полусотни. И во втором наблюдении их может оказаться чуть больше, хотя если подсчитать, может и чуть меньше. «А чего-же не подсчитать их точно?» — спросит какой-нибудь далекий от биометрии человек. А подсчитать их точно невозможно, ибо натуральные числа используемые для счета представляют собой слишком грубый инструмент, не позволяющий описывать переходные состояния. Каждый стволик считается по отдельности, но в какой момент растущий стволик отличается от новой ветви, особенно если речь идет о корневой поросли? Нет, коллеги, натуральный счет тут не подходит, да и действительные числа едва ли применимы. Я уж не говорю о космической сложности таких измерений.

102_4321

Нахрена столько сложностей в подсчете кустов? А сложностей никаких и нет. Рост профессионального геоботаника составляет один метр семьдесят восемь сантиметров. Поэтому для определения количества подроста на гектар, ему достаточно сосчитать количество стволов, на которые он упадет если выпьет на стакан больше положенного и умножить полученный результат на тысячу. Причем, поскольку упасть он может в разные стороны, подсчет стволиков ведется на всей площади круга, радиусом 1,78 м. Обернулся вокруг себя — видишь, что при падении непременно подомнешь под себя три елки и пять берез. Следовательно, на гектаре три тысячи стволов елового подроста и пять тысяч подрастающих берез. Если вам трудно представить, как вы пьяный валяетесь по кустам или ваш рост далек от идеала, можете крутить вокруг себя рейку аналогичной длины, а еще лучше приспособьте для этого дела телескопическую удочку. Впрочем, навык приобретается быстро.

В чем же секрет? Да все просто: Pi*r^2 => 3.14*1.78*1.78 ≈ 10 кв. метров. Гектар есть 10 000 кв. метров, а следовательно наша круговая площадка есть тысячная часть гектара.

Гораздо сложнее определять не количество, а возраст подроста. Если у сосны еще можно быстро подсчитать количество мутовок, примерно соответствующее числу прожитых лет

102_4702

то с елкой уже сложнее, мутовки у нее выражены гораздо хуже

102_4754
А у лиственных вообще хрен возраст определишь. Разве что по числу побегов или годовым кольцам, но все это разовые замеры. Обычно прикидываешь зависимость возраста от высоты для нескольких модельных стволиков, и далее интерполируешь сотни и тысячи наблюдений.  Ценность таких данных сами можете себе представить. С другой стороны, разве можно получить бессмысленные данные иначе как занимаясь бессмысленным делом?

Очередной день рождения молодой березки — место нарастания нового побега.

108_5032

Нельзя забывать о том, что для сосны и елки подчас не столь важен возраст и количество, сколько жизненное состояние. Определяется оно просто. Подходите к дереву:

108_4994

И делаете так:

108_4995

Еще раз продемонстрирую. Подходите к дереву:

108_5026

Хуяк!

108_5028

А далее руководствуетесь вот этой схемой определения жизненного состояния:

shema

При планировании подобных исследований, особое внимание следует уделить времени проведения работ. В условиях Северо-Запада Русской равнины, сплошные рубки обычно приводят к повышению уровня грунтовых вод. Конечно, если вам предстоит работать преимущественно в скальных, лишайниковых или брусничных типах то все ок:

102_4673Но скорее всего, вам придется обследовать долгомошники, черничники и кисличники:

102_4757

Нетрудно догадаться, что если вы решите работать в этих местах в начале лета, вас непременно заебут комары. А если перенесете работы на осень — замучаетесь подсчитывать лиственные породы. Листопад у затененного подроста и подлеска начинается во второй половине августа, причем уже в двадцатых числах бывает трудно отличить осину от березы, и живую рябину от сухой ветки. Поэтому конец июля — начало августа — ваше все.

Не всегда разумно идти к рубке кратчайшим путем. Ведь срубленный лес как-то вывозили, а значит к любой рубке идет дорога. В каком она состоянии это уже отдельный вопрос.

102_4555

При подготовке маршрута, выбираете место наибольшей концентрации подходящих рубок, связанных между собой достаточными для неутомительного продвижения дорогами и потрясающие прогулки по лесной глуши вам гарантированы. Главное, что-бы погода была не как в это лето: каждый день либо мелкий нудный дождь, либо грозовые ливни.

102_4583

С другой стороны «полное отторжение от бреда нашего» вам гарантировано. Да и как может быть иначе в условиях, когда последние мировые новости узнаешь из лесохозяйственных столбиков?

108_4996

Да, дожди утомляют, но с другой стороны комаров и клещей мало. Зато много грибов, а брусники вообще как говна:

102_4553

И все же мне сказочно повезло. Окончание лета я встретил в Сланцевском районе. Дожди прекратились на целую неделю и все живое выползло погреться и просохнуть перед наступлением первых холодов.

Вылезли кистехвостки (Orgyia antiqua):

102_3369Вылезли семиточечные божьи коровки (Coccinella septempunctata):

108_4790

и разная другая живность

108_5033

Только гадюк стало гораздо меньше — весь август они ползали под ногами, что довольно сильно меня напрягало ибо змей я панически боюсь с раннего детства. Глядя на всю окружающую красоту, просто нельзя было не вспомнить, что даже живущий один год жук-навозник умеет ориентироваться по звездам, а я за четверть века так ничему и не научился.

dscn9008

Зато каждый вечер после работы, я выбирал наиболее живописное место, собирал дрова, набирал из ближайшего ручья или лужи воду, любуясь попутно великолепным закатом.

108_4964

Темнота стала наступать гораздо быстрее чем в начале лета. Я укладывал на свою лежанку рюкзак, разводил костер и устраивался поудобнее.

108_4905

Подогревал себе фасоли в помидорном соусе, кипятил крепкий чай и наливал маленькую рюмку водки

108_4907

После, выпив и закусив, откидывался на спину и закуривая, посылал огоньком сигареты сигналы в самые глубины млечного пути. У меня была своя маленькая программа «SETI» и звезды охотно мерцали мне в ответ. Так я и засыпал, без всякой палатки, укрываясь на ночь исключительно звездным небом. Утром меня ждал новый маршрут, днем — новые обследования, а вечером — новый уютный костер.

Однажды утром я проснулся от холода. Костер погас, ветер гнал кучевые облака и спешить мне было некуда. Лето закончилось, а вместе с ним завершились работы по оценке лесовозобновления на вырубках. Мне пора было возвращаться обратно — до конца полевых работ оставалось менее полутора месяцев. Вскипятив себе чаю я собрал свой нехитрый скарб и закопав кострище, направился в сторону ближайшей дороги.
108_5040

Полевая инструкция по описанию почвенной прикопки

Подготовлена по материалу: Почвы СССР. Т. В. Афанасьева, В.И. Василенко, Т. В. Терешина, Б. В. Шеремет; Отв. ред. Г. В. Добровольский. —М.: Мысль, 1979. — 380 с., карт. , 16 л. ил.

Скачать инструкцию в формате pdf

Закладка и описание почвенной прикопки

Прикопку закладывают в типичном месте.
Размеры прикопки должны позволять замерить мощности корнеобитаемых горизонтов.
Лицевая стенка должна быть обращена на солнечную сторону.
Поднятые горизонты складываются раздельно по бокам от разреза без попадания на участок над лицевой стенкой.
В бланке описания указывают глубину нижней границы горизонтов.
Для каждого из горизонтов на бланке делают мазки.

Определяемые показатели

Степень разложения подстилки: мор, модер, мулль.

  • Муль — четко выражен подгоризонт O1 (опад этого или прошлого года) и фрагменты подгоризонта O2 (слой детрита, или трухи).
  • Модер — четко выражены подгоризонты O1 и O2, и фрагментарно подгоризонт O3 (перегной).
  • Мор — выражены все три подгоризонта.

Цвет выбирается только по трегольнику Захарова:

1011901_1901_303
Механический состав определяют мокрым способом, скатывая и растирая намоченный образец почвы

table
Структуру почвы определяют, подбрасывая почвенный ком несколько раз, пока он не рассыпется на отдельные элементы. Если структура неоднородна, используются двойные (тройные) названия, причём последним словом указывается преобладающая.

soil

Типы, роды и виды почвенных структур (размеры в см)
Кубовидный Призмовидный Плитовидный
Развиты три оси Развита верт. ось Развита горизонт. ось
Измерять ребро куба Измерять диаметр Измерять толщину пластины
Глыбистая
Крупноглыб. >10
Мелкоглыб.10—5
Столбчатая
Крупностолбч. >5
11. Столбч. 5—3
Мелкокостолбч. < 3
Плитчатая
17.Сланцеватая > 0,5
Плитчатая 0,5—0,3
18.Пластинчатая 0,3—0,1
19.Листоватая < 0,1
Комковатая
1. Крупнокомк. 5—3
2. Комк. 3—1
3. Мелкокомк. 1—0,5
Столбовидная
Крупностолб. > 5
12. Столб. 5—3
Мелкокостолб. < 3
Чешуйчатая
Скорлуповатая > 0,3
20.Грубочеш. 0,3—0,1
21.Мелкочеш. < 0,1
Пылеватая
4. Пылеватая 0,5
Призматическая
13.Крупнопризм.  > 5
14.Призм.  5—3
15. Мелкокопризм. 3—1
16. Карандашная < 1
Ореховатая
5. Крупноорех. 1
6. Орех. 1—0,7
7. Мелкокоорех. 0,7—0,5
Зернистая
8. Крупнозерн. 0,5—0,3
9. Зерн. 0,3—0,1
10. Мелкозерн. 0,1—00,5

Плотность почвы опредляется по усилию копки, легкости входа ножа в землю и внешним признакам.

  • Cлитая: почва очень плотная, сцементированная, пор и промежутков не видно; трудно поддается копке лопатой, требует применения кирки или лома. От ножа остается узкая блестящая черта.
  • Плотная: отдельные частицы почвы плотно прилегают друг к другу; почва с трудом копается лопатой и при рыхлении распадается на глыбы или комковато-ореховидные отдельности; нож в почву входит трудно.
  • Уплотненная: нож в почву входит с некоторым усилием; копается легко.
  • Рыхлая: хорошо заметны поры и почва легко копается лопатой, при рыхлении рассыпается на комочки и зернышки; нож в почву входит свободно.
  • Рассыпчатая: частицы почвы не связаны между собой и в сухом состоянии почва сыпуча (например, песчаные и отчасти супесчаные, а также сухие, сильновыпаханные верхние слои др. почв).

Сложение почв указывают по характеру пор внутри структурных агрегатов и трещин между ними
по характеру пор:

  • тонкопористое — поры меньше 1 мм;
  • пористое — 1—Змм;
  • губчатое — 3—5 мм;
  • ноздреватое (дырчатое) — 5—10 мм;
  • ячеистое — больше 10 мм.

по характеру трещин:

  • тонкотрещиноватое -трещины уже З мм,
  • трещиноватое — 3—10мм,
  • щелеватое — шире 10 мм.

Наличие корней

Новообразования различают химического и биологического происхождения.
Биологические новообразования :

червоточины- ходы дождевых червей, копролит, кротовины

корневины-сгнившие крупные корни растений;

дендриты — узоры мелких корешков на поверхности структурных отдельностей.

Химические новообразования :

table4table3

Включения —  предметы, механически включенные в массу почвы и не связанные с ней генетически. В
число включений входят обломки горных пород, не связанных с материнской породой, остатки золы, углей,  древесины, остатки материальной культуры человека.

Границы различают ровные (почти прямые) и неровные. При значительной глубине проникновения одного горизонта в толщу другого различают:

  • языки — участки проникновения верхнего горизонта в нижний, постепенно сужающиеся книзу;
  • затеки — подобны языкам, но более узкие;
  • карманы — широкие, книзу мало суживающиеся углубления верхнего горизонта в нижний;
  • заклинки — участки нижнего горизонта, внедренные в вышележащий горизонт.

По резкости перехода различают границы:

  • резкие
  • ясные
  • расплывчатые

Отбор проб

Из каждого контура берут 3-5 проб массой не менее 1 кг.
Первичные пробы рассыпают на брезенте, пакете или листе фанеры, перемешивают, разравнивают в виде прямоугольника и делят диагоналями на 4 части в виде треугольников (выглядит как конверт). Почву из двух противоположных частей отбрасывают, а остальные две части снова перемешивают и разравнивают, после чего выбрасывают две другие части и так делают до тех пор, пока не остается объединенная средняя проба всего участка массой 1 кг. Вместе с этикеткой пробу упаковывают в двойной полиэтиленовый пакет для отправки в лабораторию.

25 июля 2013 г.

Наземный фотограмметрический WZPr-метод оценки полноты древостоя

«Лесник без спичек, что хуй без яичек»
Народная лесниковская поговорка

В статье про то, как использование фотоаппарата вместо полнотомера Биттерлиха позволяет оптимизировать решение задач, связанных с определением полноты древостоя. Все иллюстрации кроме хуевых честно спизжены, но над некоторыми я поработал. Если выснится, что я тем самым нарушил ваши права — прошу меня извинить и написать для проставления соответствующих гиперссылок (я честно, уже не помню откуда пиздил исходники картинок). Во время работы над статьей в продуктовом была скидка на «три топора», поэтому математические выкладки рекомендую еще раз перепроверить.

Выражаю данной статьей признательность Михаилу Васильевичу Нешатаеву и Антону Олеговичу Пестерову, которые проебали мою призму Анучина в районе Левашово, а так-же Ивану Васильевичу Никифорчину, который в 2009 году взял на проверку курсовую работу по таксации и до сих пор проверяет.

Матчасть в лице учебника таксации говорит, что полнота «представляет собой сумму площадей поперечных сечений всех деревьев на площади на высоте 130 см в пересчете на гектар леса». Естественно, тут и далее в статье пойдет речь про абсолютную полноту, которая выражается обычно в квадратных метрах на гектар. Проще говоря абсолютная полнота это площадь всех пеньков на гектаре, срубленных выше пупка, но ниже головы — одна из важнейших величин при определения запаса древесины, а следовательно всех вытекающих параметров. Для измерения абсолютной полноты существует давно разработанный и опробованный метод угловых проб, который чаще называют методом реласкопических площадок или методом Биттерлиха, по имени изобретателя. В старой литературе, иногда встречается название WZPr-метод, от немецкого die Winkelzahlprobe. Те, кто уже знаком с методом, могут пропустить нудятину с его описанием и сразу перейти к сути вопроса.

Метод очаровательно прост. Вам потребуется изготовить вот такой «прибор»:

Полнотомер

Фактически это любая ровная палка с закрепленной на ее конце пластинкой с прорезью. Можно использовать любые материалы, главное, что-бы отношение прорези к длине палки составляло ровно 1:50. Периодически встречаю у коллег разные китайские поделки, вроде вот такой:

Нормальный полнотомер

Здесь роль палки выполняет натянутая цепочка, длина которой в 50 раз больше ширины прорези. Но большая часть использует то, что есть в карманах: спички, зажигалки, куски картона или «ключи» от пивных банок (у кого что лежит в карманах). Главное не ошибится с размерами, после определенной тренировки, такие «инструменты» зачастую дают лучший результат чем адски дорогая лазерно-оптическая техника.
Вы берете прибор Биттерлиха (полнотомер) и прикладываете конец палки без прорези, либо свободный конец цепочки к глазу и визируете через него на деревья, поворачиваясь по кругу. Первым визируете самое ближнее к вам, что-бы не спутать его с остальными и не пойти на «второй круг». При визировании вы смотрите вдоль палки/цепочки сквозь прорезь и наблюдаете три ситуации:

1. При наведении на дерево, дерево «закрывает» прорезь
2. При наведении на дерево, оно точно вписывается в прорезь (невозможно точно определить «закрывает» дерево прорезь или нет)
3. При наведении на дерево, дерево очевидно не закрывает прорезь

Принцип полнотомера

Деревья из первой категории вы считаете за единицу, деревья из второй категории считаете за пол-единицы. Третью категорию не учитываете. Предположим у вас 10 деревьев вошло в первую категорию, 4 дерева попали во вторую и все остальные попали в третью категорию. Абсолютная полнота в этом случае составляет 10*1+4*0,5=12 кв. метров на 1 гектар. Естественно, одной площадкой не обойдешься — весь мануал доступен в книжке «Методы отвода и таксации лесосек» — рекомендую к прочтению.

Весь фокус метода можно понять из картинки ниже:

Хуевая картинка

если длина полнотомера составляет 100 см, то круг, описанный им будет иметь площадь π кв.м. Если в этом кругу будет расти дерево, которое точно вписывается в разрез пластины полнотомера, значит диаметр этого дерева 2 см, а площадь сечения 0,0001π кв.м., что соответствует абсолютной полноте 1 кв. м на 1 га.

Метод чертовски хорош, однако постоянно носить с собой базисную рейку полнотомера неудобно, от использования цепочки устает рука, и в целом процесс оценки полноты требует умения держать в уме и постоянно суммировать несколько колонок цифр, включая дробные (полнота ведь считается отдельно для каждой породы). При долгой работе, особенно в неприятных условиях (дождь, гнус, жара и др.) основная масса ошибок возникает от усталости и невнимательности исследователя. Несколько упростить работу можно если применять оптическую модификацию полнотомера — призму Анучина, но в настоящее время их либо не производят вообще, либо производят в очень малых количествах и приобрести такую призму проблематично.

Призма Анучина

Призму можно держать на любом расстоянии от глаз, однако необходимость подсчета сумм и связанные с этим проблемы призма не решает. Все также необходимо оценивать выходит ли преломленное изображение ствола за границы ствола поверх и понизу призмы, касается его краем, или изображение ствола искажается недостаточно.

Принцип призмы Анучина

Всевозможные электронные приблуды дороги и, как я уже писал, ощутимого улучшения производительности они не дают.
Размышляя над этой безысходностью я несколько дней путешествовал по виртуальным улицам гугл стрит пока мне не пришло в голову измерить полноту одного из скверов города, находясь в этот момент от него на расстоянии в полторы тысячи километров. Но для этого мне нужен был виртуальный полнотомер Биттерлиха, создать который, впрочем уже не составляло особых проблем.

Примечание. Здесь и далее подразумевается работа со снимками, полученными с помощью фотоаппарата без дисторсии. При использовании фотоаппаратов с дисторсией, необходимы дополнительные расчеты для учета оной. Они довольно громоздки, но если вы знаете, что такое «дисторсия», то вполне сможете их рассчитать самостоятельно.

Цифровые фотоаппараты которые мы используем замечательны во-первых тем, что снимают секторами, в отличии от сканеров, а во-вторых тем, что получаемое растровое изображение уже разбито на пиксели, сквозь которые мы можем глядеть как сквозь разрез полнотомера. Примитивно говоря, это устроено так:

Схема метода

Не правда ли, это похоже на полнотомер Биттерлиха, только как бы «повернутый» прицельным визиром к наблюдателю? Естественно, ни о каком соотношении 1:50 тут не может быть и речи, но тем не менее, это не мешает установив зависимость между линейными размерами пиксела, и углом, который он охватывает в натуре, оценивать значения абсолютных полнот.
Первое что необходимо сделать — это узнать ширину 1 пиксела. Ее можно посмотреть либо в свойствах снимка, либо с помощью фоторедактора, например в GIMP 2.8: меню изображение -> свойства-разрешение:

Гимп скриншот

Разрешение снимка обычно представлено либо одним, либо двумя числами. В первом случае чило означает количество пикселей в дюйме диагонали, во втором случае, количестово пикселей в дюйме ширины и высоты. Соответственно, для вычисления ширины в первом случае нам необходимо воспользоваться теоремой Пифагора (количество пикселей в дюйме ширины равно квадратному корню половины квадрата количества пикселей в дюйме диагонали). В нашем случае в 1 дюйме ширины содержится 180 пикселей изображения. Следовательно, ширина 1 пиксела 0,014 см. Это и будет минимальная ширина прорези в нашем виртуальном полнотомере Биттерлиха.
Теперь необходимо определиться с длиной виртуальной базисной рейки. Для этого необходимо установить какой угол по ширине охватывает объектив вашего фотоаппарата. Учтите, что он изменяется при зуммировании объектива, поэтому «приближения» при снимках использовать не нужно.
Ширину охвата фотоаппарата можно рассчитать исходя из технической документации на ваш объектив, в которой указан угол изображения объектива. Для широкоугольных объективов он превышает 75 градусов, для длиннофокусных составляет менее 30 градусов. Остальные объективы называют нормальными, как правило на недорогих моделях стоят именно они. Угол изображения объектива — это диагональный угол, поэтому для расчета ширины охвата требуется вновь воспользоваться теоремой Пифагора.
Если же документация утеряна много лет назад, как в моем случае, достаточно просто установить фотоаппарат на штатив, сфотографировав удаленную на известное расстояние линейку, после чего измерить получившийся угол. Мой фотоаппарат охватывает ширину в 45 градусов.
Ширина фотографии составляет 3072 пиксела, что видно из свойств растра. Значит на каждый пиксел охватывает ширину в 45/3072=0,0146484375 градуса. Выше мы рассчитали, что каждый пиксел имеет ширину 0,014 см. Все что нам остается, для того, что-бы рассчитать длину виртуальной базисной рейки — это решить задачку для седьмого класса: основание равнобедренного треугольника составляет 0,014 см, вершина имеет угол 0,0146484375 градуса. Всего-то необходимо найти высоту этого треугольника.
Решение 1. Высота делит равнобедренный треугольник на два равных прямоугольных треугольника с длиной противолежащего катета 0,014/2=0,007 см и острым углом в вешине 0,0146484375/2=0,00732421875 градуса. Искомая высота является прилежащим катетом в наших треугольниках и равна отношению катета к тангенсу острого угла: 0,007 / tg(0,00732421875) = 54,7594860417≈55 см.
Решение 2. Будем считать, что этот треугольник не равнобедренный, а прямоугольный. Да, это аморальное математическое допущение, но при таком соотношении сторон, возникающая ошибка незначительно мала. Тогда искомая высота, она же прилежащий катет составляет: 0,014/tg(0,0146484375)=54,7594851469≈55 см.
Размер нашей виртуальной базисной рейки составляет 5,5 м. Визирный прицел составляет 0,00014 м. Следовательно, если на фотографии мы видим, что единственное дерево имеет ширину 1 пиксел, мы можем утверждать, что на площади (π×5,5^2)/(360/45)=11,8791472214≈12 кв.м площадь сечения древостоя составляет π*0,00007^2=1,5393804 × 10^(-8) м, что в пересчете на гектар составит 0,000013 кв.м. Это, конечно, чрезвычайно мало, но ситуация, при которой у вас в кадре будет только один ствол дерева шириной в 1 пиксел может быть разве что в таком случае:

Саванна

Впрочем, возникающее желание подсчитать суммарную ширину стволов в пикселах и умножить их на выведенную величину неверно, поскольку не имеет никакого биологического смысла. Необходимо учитывать каждое дерево отдельно, так же как и в классическом методе Биттерлиха. Но если в классичеческом WZPr-методе мы использовали всегда одинаковый полнотомер, то в нашем виртуальном полнотомере размер визирного прицела уникален для каждого дерева. Измеряя ширину ствола на фотографии в пикселах, мы получаем ширину визирного прицела виртуального полонотомера в сантиметрах.

Таким образом, абсолютная полнота древостоя на 1 га вычисляется по формуле:
P = Σ(10000*(π*(0,5*B)^2)/(360/V*π*((0,5*B)/tg(0,5*0,W*B))^2)) где,
P — полнота, в кв.м
V — угол охвата снимка,
B — ширина дерева на фото, в см (ширина прорези виртуального полнотомера),
W — угол охвата одного пиксела, градусов
Применительно к нашему случаю:
P = Σ(10000*(π*(0,5*B)^2)/(360/45*π*((0,5*B)/tg(0,5*0,014*B))^2))
В материальном виде, использование этого метода можно представить так, будто мы располагаем не одним полнотомером, а бесконечным множеством полнотомеров с разными размерами визиров. Классический метод Биттерлиха совершенно игнорирует все деревья, не совпадающие с размером визира. В случае же фотограмметрического метода, учитываются все деревья. При этом, нет необходимости измерять абсолютно все деревья на снимке, но чем больше их будет измерено, тем точнее окажутся результаты.