Фрактальный анализ сложности горизонтальной структуры напочвенного покрова

Фрактальный анализ сложности горизонтальной структуры напочвенного покрова

Эта статья была написана в 2009 году и уже устарела — появились новые данные, новые результаты. В статье не рассмотрены методы связанные с размерностями высоких порядков, методы поканального анализа растров. Ни слова об алгоритмах сжатия jpeg. Данных — кот наплакал. И вообще, кругом говно. Есть только одна причина, по которой я ее публикую. Постройте аналог таблицы 7 по данным (В.Н. Федорчук и др., 2005) или любым другим. Построили? Ну вот, потому-то и публикую.

Каждый тип растительного сообщества характеризуется своим особым типом обмена вещества и энергии (Полевая геоботаника, 1959). Анализ структуры растительности позволяет оценить этот тип обмена, и как следствие, определить растительное сообщество.

Цель работы — определить факторы, влияющие на сложность горизонтальной структуры напочвенного покрова.

Для достижения цели разработан метод фрактального анализа фотоизображений напочвенного покрова, основанный на понимании напочвенного покрова как диссипативной структуры.

Материалы и методы

В 2008 году в лесопарке «Пискаревка» (Санкт-Петербург) заложено 80 учетных площадок размером 0,25 кв.м. Преобладающий тип леса на обследованной территории – смешанный березняк (6Б4С) черничный. Возраст древостоев 60 лет, отдельные деревья имеют возраст до 150 лет. На каждой учетной площадке сделана фотография лесного полога (вертикально вверх), живого напочвенного покрова (вертикально вниз). Описано общее и повидовое проективное покрытие травяно-кустарничкового и мохово-лишайникового ярусов, мощность и покрытие подстилки, мощность гумусового горизонта.

При анализе данных, описанные виды травяно-кустарничкового яруса делились на 4 эколого-ценотические группы (А.А. Егоров и др., 1997; «Иллюстрированный определитель…», 2000; В. Ю. Нешатаев, А. А. Егоров, 2006):
1. Лесные виды, характерные для ненарушенного леса черничной серии типов (В.Н. Федорчук и др., 2005), такие как Vaccinium vitis-idaea, Vaccinium myrtillus и др.
2. Луговые виды (Trifolium pratenseLathyrus pratensis и др.)
3. Сорные виды (Plantago majorTaraxacum officinale и др.).
4. Опушечные, неморальные, прибрежные и прочие виды, такие как Geum urbanum, а так же светолюбивые лесные злаки (например, Avenella flexuosa).

Для каждой из эколого-ценотических групп рассчитывалась степень доминирования (индекс Симпсона) («Методы…», 2002).

Сложность структуры напочвенного покрова на учетных площадках (0,25 кв. м) определена на основе анализа фотоизображений, полученных в ходе полевых работ. На первом этапе фотографии были обрезаны по контуру учетной площадки и переведены из формата jpeg в формат bmp (256-цветовая палитра) с разрешением 22,97 х 22,97 см (650 х 650 пикселей), что в реальности соответствует площадке размером 50 х 50 см (рис.1).

Рис.1. Обрезка фотографии по контуру учетной площадки и преобразование ее в формат bmp-256 (650х650 пикселей).

Рис.1. Обрезка фотографии по контуру учетной площадки и преобразование ее в формат bmp-256 (650х650 пикселей).

Затем полученное изображение сохранялось в виде негатива формата bmp (черно-белый) (рис.2).

Рис.2. Преобразование негатива фотографии в формат bmp-ч/б (650х650 пикселей).

Рис.2. Преобразование негатива фотографии в формат bmp-ч/б (650х650 пикселей).

При этом травы и кустарнички отображаются в виде закрашенных контуров (злаки отображаются в виде узких полос, толщиной 1-3 пикселя). Мхи отображаются в виде группы крупных точек размером 4-15 пикселей. Неоднородности подстилки (сборки, разрывы) отображаются в виде отдельных точек, размером 1-4 пикселя. Однородные участки подстилки отображаются в виде белого фона.

После этого, полученное изображение было покрыто сетью клеток определенного масштаба и подсчитано количество клеток, в которых граничили между собой черный и белый пиксели (рис.3).

Покрытие1Рис.3. Покрытие изображения клетками различного масштаба. Граничные клетки залиты красным цветом (увеличено, показан левый нижний угол рисунка 2.).

Рис.3. Покрытие изображения клетками различного масштаба. Граничные клетки залиты красным цветом (увеличено, показан левый нижний угол рисунка 2.).

Размер клеток с каждым новым покрытием возрастал. Изображение покрывали 10 раз. Минимальная площадь одной клетки 0,01см2 (418609 клеток), максимальная 0,60 см2 (4186 клеток).

Зависимость между площадью одной клетки и количеством клеток содержащих в себе черный и белый пиксель аппроксимировали степенной функцией.

Размерность Хаусдорфа-Безиковича (фрактальная размерность) рассчитана с использованием полученного уравнения регрессии по формуле:

 D = -N;
где N- показатель степени в уравнении регрессии (y = ax^N).

Обычно для природных систем характерен целый ряд размерностей. Такие системы носят название мультифракталов. Показатель размерности при их изучении зависит не только от сложности анализируемой структуры, но и от параметров клеточного метода (Иванов и др., 2006). Для анализа мультифракталов применяют кривую спектра фрактальных размерностей (Федер, 1991; Шредер, 2001; Божокин, Паршин, 2001; Мандельброт, 2002; Шурганова и др., 2002). Чтобы выразить этот спектр численно, разработана формула отношения области охваченной мультифрактальным спектром к площади, ограниченной топологическими размерностями, между которыми заключены все фрактальные размерности спектра:

Формулагде Z- показатель сложности структуры;
Dt –Топологическая размерность. Равна 0 в нижней границе области фрактальных размерностей (равна 0 в случае Dt* a), равна 1 в верхней границе области фрактальных размерностей (равна 1 в случае Dt* b),
f(x) — функция, наилучшим образом аппроксимирующая фрактальный спектр,
a – Нижняя граница площадей клеток покрытия, см;
b – Верхняя граница площадей клеток покрытия, см;

Показатель сложности структуры (Z), вычисленный таким образом назван интегральной размерностью покрытия. Далее по тексту, она подразумевается под всеми упоминаниями размерности, кроме особо оговоренных случаев.

Результаты и их обсуждение

Характеристика горизонтальной структуры напочвенного покрова

Анализ показал наличие в структуре напочвенного покрова самоподобных (фрактальных) свойств. Сложность структуры определяется сочетанием проективного покрытия, видового разнообразия травяно-кустарничкового яруса и мощности подстилки.

Наиболее простая структура (значение размерности – 0,65-0,7) наблюдается при высокой сомкнутости древостоя (80%) низкой мощности подстилки, малом проективном покрытии. Видовое разнообразие на таких площадках низкое (в среднем 3 вида травяно-кустарничкового яруса на одной учетной площадке). Представлены преимущественно виды лесных местообитаний (Oxalis acetosella, Vaccinium vitis-idaea, Vaccinium myrtillus, Majantemum bifolium).

При снижении сомкнутости древостоя увеличивается видовое разнообразие и проективное покрытие видов травяно-кустарничкового яруса. Снижается степень доминирования лесных видов, за счет усиления роли видов опушечнных, неморальных и прочих местообитаний. Появляются рудеральные виды (Taraxacum officinale). Увеличивается мощность подстилки (более 1 см). Значение интегральной размерности покрытия для структуры напочвенного покрова составляет 0,7-0,8.

В условиях минимальной сомкнутости древостоя проективное покрытие и видовое разнообразие достигают самых больших значений. Мощность подстилки в этих условиях максимальна. В травяно-кустарничковом ярусе из лесных видов сохраняется только седмичник европейский. Появляется Poa pratense – типичный луговой вид. Доминируют виды переходных местообитаний. Структура напочвенного покрова имеет наибольшую сложность. Интегральная размерность покрытия для таких площадок выше 0,9.

Связь сложности горизонтальной структуры с параметрами напочвенного покрова

Сложность горизонтальной структуры напочвенного покрова (выраженная через интегральную размерность покрытия) зависит от трех прямых факторов: проективного покрытия травяно-кустарничкового яруса, видового разнообразия травяно-кустарничкового яруса и мощности подстилки на учетной площадке (Таблица).

Тут должна быть таблица, которую все-равно никто не читает.

Из косвенных факторов, имеющих заметную связь с интегральной размерностью покрытия, выделяется сомкнутость древостоя, количество и степень доминирования лесных видов и видов, не относящихся к конкретным местообитаниям, произрастающих в широком диапазоне условий.

Связь сложности горизонтальной структуры с проективным покрытием травяно-кустарничкового яруса

Связь сложности структуры напочвенного покрова и проективного покрытия травяно-кустарничкового яруса наилучшим образом описывается степенным законом, поскольку общее проективное покрытие имеет верхний предел (100 %).

Изменение проективного покрытия заметно влияет на сложность структуры только на начальных этапах (рис. 4.). При проективном покрытии до 40%, увеличение проективного покрытия ведет к заметному усложнению структуры напочвенного покрова, снижение к упрощению. При проективном покрытии свыше 40 % изменение проективного покрытия незначительно сказывается на сложности структуры напочвенного покрова (рис. 4.).

Рис. 4. Связь интегральной размерности покрытия (сложности структуры напочвенного покрова) и проективного покрытия травяно-кустарничкового яруса (ТКЯ) при различных значениях проективного покрытия.

Рис. 4. Связь интегральной размерности покрытия (сложности структуры напочвенного покрова) и проективного покрытия травяно-кустарничкового яруса (ТКЯ) при различных значениях проективного покрытия.

Связь сложности горизонтальной структуры с видовым разнообразием

Связь интегральной размерности покрытия и видового разнообразия, теоретически должна быть линейна, поскольку верхний предел богатства видового разнообразия отсутствует. В действительности, это не совсем так (рис. 5.), поскольку существует положительная корреляция (r2 = 0,41) между количеством видов и проективным покрытием травяно-кустарничкового яруса.

Рис.5. Связь интегральной размерности покрытия (сложности структуры напочвенного покрова) и видового разнообразия на учетной площадке. Причины низких значений коэффициента аппроксимации раскрыты далее по тексту.

Рис.5. Связь интегральной размерности покрытия (сложности структуры напочвенного покрова) и видового разнообразия на учетной площадке. Причины низких значений коэффициента аппроксимации раскрыты далее по тексту.

Малому видовому разнообразию соответствует обычно или очень небольшое или наоборот максимальное проективное покрытие. В левой части рис. 5. видно, что площадкам с низким видовым разнообразием не характерны определенные значения фрактальной размерности. Большой разброс данных происходит от того, что в них отражена одновременно информация о площадках с высоким проективным покрытием травяно-кустарничкового яруса (увеличивающим значения интегральной размерност покрытия до 0,9-0,95) и площадках с низким проективным покрытием (значение размерности менее 0,75). Для участков с более высоким видовым разнообразием (правая часть рис. 5.) связь становится более заметной.

Связь между сложностью структуры напочвенного покрова и видовым разнообразием травяно-кустарничкового яруса частично объясняется положительной корреляцией, между количеством видов и проективным покрытием. Однако, лишь 16,8% (коэффициент детерминации) взаимосвязи между проективным покрытием и количеством видов объясняется их взаимовлиянием. Это позволяет сделать вывод о влиянии видового разнообразия на сложность горизонтальной структуры напочвенного покрова.

Сложность структуры напочвенного покрова тесно связана со степенью доминирования основной эколого-ценотической группы. При смене доминирующей эколого-ценотической группы от лесных видов к сорным, сложность структуры повышается, достигает максимума при равном доминировании разных эколого-ценотических групп и в дальнейшем снижается при усилении доминирования новой эколого-ценотической группы. Связано это с дугообразным изменением видового разнообразия при смене доминирующей эколого-ценотической группы (С.Н. Голубев, 2009).

Связь сложности горизонтальной структуры с параметрами мохово-лишайникового яруса и подстилки

Низкая связь обнаружена между интегральной размерностью покрытия и проективным покрытием мохово-лишайникового яруса и покрытием подстилки. Причиной этого является схожесть подстилки и мохово-лишайникового яруса после обработки изображений, что, несомненно, является недостатком используемого метода (данный недостаток можно исправить путем включения в анализ цветовых характеристик растра).

Между покрытием подстилки и сложностью структуры напочвенного покрова существует обратная связь. Между мощностью подстилки, проективным покрытием мохово-лишайникового яруса и сложностью структуры напочвенного покрова связь прямая. Соответственно усложнение структуры напочвенного покрова происходит при увеличении проективного покрытия мохово-лишайникового яруса и мощности подстилки. Увеличение покрытия подстилки ведет к равномерному рассеиванию по растру случайных одиночных пикселей, что снижает величину интегральной размерности покрытия.

Диссипативные свойства структуры напочвенного покрова

Для диссипативной структуры характерно усложнение при увеличении притока энергии (Г. Хакен, 1980). Аналогичное свойство наблюдается и у горизонтальной структуры напочвенного покрова. При увеличении притока энергии (снижении сомкнутости древостоя) интегральная размерность покрытия возрастает (рис. 6).

Рис.6. Возрастание сложности структуры напочвенного покрова при снижении сомкнутости. Данные сгруппированы в десять групп. Корреляция между значениями исходных данных указана в Таблице.

Рис.6. Возрастание сложности структуры напочвенного покрова при снижении сомкнутости. Данные сгруппированы в десять групп. Корреляция между значениями исходных данных указана в Таблице.

Сложность структуры изменяется и при качественных перестройках системы, к каким относятся смена доминирующей эколого-ценотической группы. В случае уменьшения притока энергии (затенения) усложнение структуры напочвенного покрова, как диссипативной структуры невозможно. Следовательно, при затенении изменения в напочвенном покрове не должны усложнять его структуру. Поскольку проективное покрытие лишь при низких значениях существенно влияет на сложность структуры, можно предположить, что, при затенении, изменение напочвенного покрова, в начале будет происходить преимущественно через снижение видового разнообразия, а в конце через снижение проективного покрытия.

В случае увеличения притока энергии (осветления) будет наблюдаться противоположная картина: вначале увеличение проективного покрытия, а затем качественная перестройка системы, в ходе которой основной причиной усложнения структуры растительности будет внедрение новых видов и постоянство или даже снижение проективного покрытия.

Подобная динамика действительно прослеживается на обследованных учетных площадках (рис.7).

Рис. 7. Динамика видового разнообразия и проективного покрытия травяно-кустарничкового яруса (ТКЯ) на учетных площадках, при изменении сомкнутости древостоя.

Рис. 7. Динамика видового разнообразия и проективного покрытия травяно-кустарничкового яруса (ТКЯ) на учетных площадках, при изменении сомкнутости древостоя.

Заключение

Метод фрактального анализа выявляет зависимость сложности структуры напочвенного покрова от трех основных прямых фактора: проективного покрытия, видового разнообразия травяно-кустарничкового яруса и мощности подстилки. Если проективное покрытие имеет низкие значения (до 40%) преимущественно от него зависит сложность структуры напочвенного покрова. Если проективное покрытие имеет значения более 40%, сложность структуры напочвенного покрова определяется другими признаками (например, видовым разнообразием травяно-кустарничкового яруса).

Главным косвенным фактором, влияющим на структуру напочвенного покрова, является степень сомкнутости древостоя.

Напочвенный покров как диссипативная структура усложняется при дополнительном поступлении энергии. При снижении количества поступаемой энергии перестройка напочвенного покрова происходит без усложнения структуры. При этом в начале снижается видовое разнообразие, в конце снижается проективное покрытие. При увеличении количества поступаемой энергии, перестройка структуры напочвенного покрова происходит в обратном порядке. В начале увеличивается проективное покрытие, в конце изменяется видовое разнообразие.

Практическая польза заключается в возможности использования данных о динамике структуры напочвенного покрова при планировании хозяйственной деятельности.

Установление типа напочвенного покрова методом фрактального анализа фотоизображений может быть полностью автоматизировано, что делает весьма ценным его практическое значение. Отличительной особенностью этого метода является выявление не отдельных деталей напочвенного покрова, а установление признаков, присущих данному типу напочвенного покрова в целом, признаков, основанных на энергетическом обмене с окружающей средой. Учитывая новизну метода и возможность совмещать его с другими методами (например, нейросетевые технологии обработки изображений), считаю разработку метода индикации напочвенного покрова путем фрактального анализа фотоизображений важной и перспективной задачей.

Добавить комментарий