Нечеткий пацанчик

В труды Лотфри Заде я влюбился с первого прочтения и до сегодняшнего дня любовь эта не только не угасла, но даже окрепла, подведя меня к открытию субъективной логики. Говоря о безмерности такой страсти, достаточно хотя-бы вспомнить историю того утра, которое я провел в компании со свежеприбывшим в часть азером, застав его в армейском толчке с гашишем вместо тряпки. Его родители и предположить не могли, что выбрав имя знаменитого математика, они оберегли сына от хорошей пиздюлины на фоне журчащих чаш Генуя. Судя по тому, как он прожигал дырку в бутылке из под «фанты», проблема здоровья его совершенно не интересовала. Я отобрал у этого идиота бутылку и раскуривались мы с ним через нормальную полторашку отечественного уставного лимонада «Дюшес».

С тех пор я постоянно вижу возможности эффективного применения аппарата фаззи-логики как в научных, так и в сугубо прикладных задачах. Ведь только глупец не замечает того, что показатель неэвклидовой размерности в сложных системах есть не что иное, как значение характеристической функции истинности. Это столь же очевидно, как и то, что пиво выпитое до выдоха после первой затяжки индифферирует ваши ощущения социальной несправедливости и классовой неполноценности.

Простой пример. В процессе классификации растительности теряется часть информации о классифицируемых объектах (их «индивидуальные особенности») [5]. Это приводит либо к недоиспользованию, либо к перерасходу ресурсов окружающей среды и производства.

Вот было бы заебато, усовершенствовать имеющуюся типологию лесов Северо-Западных районов России [5], для возможности учета индивидуальных особенностей растительного покрова! Такая типология была-бы актуальной при проектировании объектов строительства, сельского и лесного хозяйства.

Говно-вопрос! Для этого только требуется современную типологию [5] перестроить на основе теории нечетких множеств [1].

Классификации лесной растительности, использующие теорию нечетких множеств неизвестны. Аналогом нечеткой классификация в лесной таксации можно считать метод характеристики состава древостоя (Чистые насаждения – классы, коэффициенты в формуле состава древостоя – значения характеристических функций, определяющих степень приближенности к каждому классу). Теоретические аспекты нечетких классификаций рассматриваются в [2].

Я, например, когда покупал в полуторалитровых бутылках портвейн «Агдам» (такие бутылки с углублением для руки) всегда представлял себе двухуровневую типологию. Наименьшая единица – тип леса, выделяется аналогично [5] (на основе преобладающей породы и серии типов леса). Серии типов леса (далее – «серии») выделяются на основе обилия групп индикаторных видов [5]. Для каждой серии характерна индикаторная группа с уникальным набором видов. Растительное сообщество может одновременно относиться к одной (истинной) серии или нескольким (переходным) сериям. Истинная серия характеризуется присутствием только одной индикаторной группы с суммарным проективным покрытием травяно-кустарничкового и мохово-лишайникового яруса 100 %. Показатель истинности серии рассчитывается как мера количественного сходства (коэффициент Чекановского, Эвклидово расстояние и др. [4]) между рассматриваемым растительным сообществом и истинной серией типа леса.

Да что там говорить, я даже серии типов леса выделил:

1. Лишайниковая (ЛШ). Основные индикаторные виды: Arctostaphylos uva-ursi, Carex ericetorum, Cladonia amaurocraea, Cladonia unicalis, Cladina arbuscula, Cladina rangiferina, Cladina stellaris, Cetraria islandica, Licopodium complanatum. Вспомогательные индикаторные виды: Polytrichum juniperinum, Polytrichum piliferum;

2. Кустарничковая (КТ). Основные индикаторные виды: Vaccinium myrtillus, Vaccinium vitis-idaea. Вспомогательные индикаторные виды: Melampyrum pratense;

3. Мелкотравная (МТР). Основные индикаторные виды: Majanthemum bifolium, Trienthalis europaea, Rubus saxatilis, Luzula pilosa, Oxalis acetosella, Pteridium aquilinum. Вспомогательные индикаторные виды: Dryoptheris carthusiana, Linnaea borealis, Melampyrum sylvaticum, Orthilia secunda, Lycopodium annotinum, Platanthera bifolia;

4. Неморальная (НЕМ). Основные индикаторные виды: Melica nutans, Viola riviniana, Carex digitata, Pyrola rotundifolia, Paris quadrifolia, Aegopodium podagraria, Pulmonaria obscura, Stellaria holostea, Actaea spicata, Lathyrus vernus. Вспомогательные индикаторные виды: Veronica officinalis, Veronica chamaedrys, Milium effusum, Dryoptheris filix-mas, Anemone nemorosa, Hepatica nobilis, Galeobdolon luteum, Rhodobryum roseum, Ranunculus cassubicus, Asarum europaeum, Viola mirabilis, Myosotis sylvatica, Galium odoratum;

5. Сфагновая (СФ). Основные индикаторные виды: Carex globularis, Sphagnum girgensohnii, Sphagnum capilifolium, Polytrichum commune, Sphagnum magellanicum. Вспомогательные индикаторные виды: Rubus chamaemorus, Molinia coerulea, Aulacomnium palustre, Sphagnum wulfianum;

6. Багульниковая (БАГ). Основные индикаторные виды: Ledum palustre, Chamaedaphne calyculata, Vaccinium uliginosum, Oxycoccus palustris, Andromeda polifolia, Eriophorum vaginatum, Empetrum nigrum, Drosera rotundifolia, Oxycoccus microcarpus, Sphagnum fuscum. Вспомогательные индикаторные виды: Sphagnum angustifolium, Carex pauciflora, Carex limosa, Betula nana;

7. Долгомошная (ДОЛ). Основные индикаторные виды: Pleurozium schreberi, Hylocomium splendens, Dicranum scoparium, Dicranum majus, Dicranum polysetum;

8. Болотнотравяная (БТР). Основные индикаторные виды: Comarum palustre, Menyanthes trifoliate, Equisetum fluviatile, Carex lasiocarpa, Phragmites australis, Calla palustris. Вспомогательные индикаторные виды: Carex rhynchophysa, Scirpus sylvaticus, Solanum dulcamara, Carex vesicaria, Naumburgia thyrsiflora, Equisetum palustre, Carex acuta, Eriophorum polystachyon, Sphagnum riparium

9. Таволжная (ТАВ). Основные индикаторные виды: Filipendula ulmaria, Geum rivale, Ranunculus repens, Galium palustre, Viola epipsila, Cirsium oleraceum. Вспомогательные индикаторные виды: Caltha palustris, Carex cespitosa, Scutellaria galericulata, Cardamine amara, Impatiens noli-tangere, Chrysosplenium alternifolium, Equisetum pratense, Calliergon cordifolium, Plagiomnium undulatum;

10. Приручейная (ПР). Основные индикаторные виды: Athyrium filix-femina, Dryopteris expansa, Deschampsia cespitosa, Rubus-idaeus, Gymnocarpium dryopteris, Plagiochila major. Вспомогательные индикаторные виды: Phegopteris connectilis, Cirsium heterophyllum, Crepis paludosa, Circaea alpine, Aconitum septentrionale, Plagiomnium medium, Sphagnum squarrosum.

Что у нас тут? Брусничная серия говорите, согласно [5]? А это что? Ах, это тоже брусничная? А это? Позвольте, сударь, может мы прекратим отметать явные различия в увиденном и согласимся с тем, что наша прогулка проходит по кустарничково-лишайниковому типу КТx ЛШy, где x и y просто принимают различные значения?

Нечеткая классификация более достоверно описывает условия произрастания. Так при сравнении серий типов леса и ценозов в координатной системе, где оси означают богатство и влажность (рисунок) видно, что большинство растительных сообществ, которые по старой классификации относятся к «чистым» (лишайниковая, таволжная) на самом деле являются переходными. Ординация произведена по методу [3]. Проективное покрытие основных индикаторных видов принималось больше 8%, вспомогательных – единично.

ramensk
Рисунок. Четкие [5] (серый цвет) и нечеткие серии типов леса соординированные по влажности и богатству почвы.

 

Использование нечеткой типологии дает нехуевые преимущества:

1. Возможность более точного определения и планирования объема необходимых работ.

2. Допустимость менее детального обследования территории, поскольку существует возможность обоснованной интерполяции данных.

3. Возможность более обоснованного утверждения границ проектных решений.

А ведь это только те преимущества,  которые очевидны для любого дегенерата! Я даже молчу о том, что критерий истинности растительного сообщества открывает нам необычные возможности прогноза динамики растительных сообществ как систем с детерминированным хаосом, над чем уже не одно десятилетие бьются геоботаники, экологи и математики разных стран.

— Говно это, а не типология, прокомментировал мой доклад известный геоботаник В.И. Василевич. Он, конечно, человек интеллигентный, выразился мягче, но я сразу понял, что разработал действительно хорошую типологию.

Или вот вам, другой пример. Потребовалось однажды нитку ЛЭП вести через ООПТ [6]. А тогда все дико задрачивались на лобарию пульмонарию и мирику гале. Но восковник в месте проектирования не растет, а вот лишай надо было оберегать всеми силами. Да и кроме него хватало видов, которые требовалось охранить. Нужна была карта на которой сразу бы читался породный состав во всем его многообразии, полнота древостоя, да еще, что-бы карту эту можно было как подложку использовать. Так, что-бы человек смотря на карту сказал, что в этой точке лес гуще и елки больше. Не в абсолютных показателях, их можно и из таксации посмотреть, а именно относительно прилегающих участков.

При такой задаче, обычным планом лесонасаждений можно только жопу подтереть.

четкая

 

И никакие ГИСы (а в то время был только старый добрый ArcView 3.2a) вам не помогут решить эту задачу, пока вы не откроете свое сердце фаззи-множествам и не смиритесь с мыслью о том, что четкость элементов карты может быть не только достоинством, но и недостатком.

Я даже больше скажу: булевы классификации допустимы лишь для качественно различимых объектов. Примение дискретного деления для количественно разнородных объектов в областях, связанных с эксплуатацией природных ресурсов есть экономическое и экологическое преступление. Картограф, проводящий линию обязан нести ответственность не меньшую, чем врач делающий надрез. В следующий раз, когда будете четырьмя точками озеро обклацивать, представьте, что так-же хирург будет вашу опухоль вырезать.

Но все-что связано с природными ресурсами у нас не логично, а упраздненное в 2007 году лесное хозяйство и вовсе парадоксально. У нас квартала квадратные, а выдела имеют форму животных из ЛСД-шного наркотрипа, в то время как должно быть совершенно наоборот! Просто почувствуйте масштабы пиздеца. В сельском хозяйстве, где все на порядок проще, сходные вопросы поднимал, если не ошибаюсь, академик Виноградов, но один хрен за пределы опытных полей Новочеркасского НИИ виноградорства ничего не сдвинулось.

Так что-же делать? Все? Пиздец? Спокойно, товарищи! Это как плавание: для начала перестаньте бояться воды. В нашем случае, перестаньте бояться того, что вы не сможете, указав на карте точку, озвучить абсолютное значение показателя в этой точке. Оно вам нахуй не надо: важно знать, что в этой точке показатель больше чем в соседней. Распределяем цвета по породам, согласно правилам оформления лесотаксационных документов, далее создадим отдельные слои по каждой породе, установив для каждого выдела прозрачность, пропорциональную четверти полноты древостоя в этом выделе. Если распечатать каждый из слоев, получится карта полноты ельников, карта полноты сосняков и т.д. А теперь магия — наложим слои друг на друга.

нечеткая

 

Согласен, выглядит непривычно. Чем ярче цвет — тем гуще лес. Чем чище цвет — тем однороднее состав. Конечно, это только условно нечеткая карта — что поделать, исходные данные накладывают известные ограничения. Сама карта тоже явно требует доработки стиля, однако стоит ли требовать игру актеров от фильма «Прибытие поезда на вокзал Ла-Сьота»?

— Говно это, а не карта, прокомментировал мое творение друг и по совместительству известный в узких кругах геолог. Он, конечно, человек интеллигентный, выразился жестче, но я сразу понял, что разработал действительно хорошую карту.

Жаль только за время жизненных пертурбаций оригинал этой карты исчез, оставив после себя только свою уменьшенную копию:

fuzzymap

 

А парня того, говорят, через пол-года менты в увольнении взяли с целым пакетом травы. И ничего, подержали пару часов и отпустили. Видимо в школах милиции тоже изучают нечеткие множества.

 

Литература:

1. Заде Л. Понятие лингвистической переменной и его применение к принятию приближенных решений / Пер. с англ.— М.: Мир, 1976.— 167 с.;

2. Нечеткие множества и теория возможностей. Последние достижения: Пер. с англ. / Под ред. Р.Р. Ягера. – М.: Радио и связь, 1986, — 408 с.;

3. Раменский Л.Г., Цаценкин И.А., Чижиков О.Н., Антипин Н.А. Экологическая оценка кормовых угодий по растительному покрову – М.: Государственное издательство сельскохозяйственной литературы, 1956, 472 с.;

4. Словарь понятий и терминов современной фитоценологии / Б.М. Миркин, Г.С. Розенберг, Л.Г. Наумова. – М.: Наука, 1989. – 223 с.;

5. Федорчук В.Н., Нешатаев В.Ю., Кузнецова М.Л. Лесные экосистемы северо-западных районов России: Типология, динамика, хозяйственные особенности. – С.-Пб., 2005. 382 с.

6. Материалы комплексного экологического обследования участков территории, обосновывающие внесение изменений в положение о природном комплексном заказнике регионального значения «Лисинский». — С.-Пб., 2011. 159 с.

Допустимые пределы использования теории нечетких множеств в экологическом моделировании
Растительность петербургского Новодевичьего кладбища
Опен стайл пиздинг
Векторная отмывка
Животные Красной Книги Ростовской области
Показатель совершенства живых систем
Основы панка. Оценка предположения о повышенной частоте встречаемости обнажений горных пород на скло...
Оценка сбежистости, возраста и высоты широколиственных пород по диаметру кроны и ствола

Добавить комментарий

Ваш e-mail не будет опубликован.