Фрагмент пяти вавилонян

Флора Нижнего Дона включает в себя несметное количество всевозможных ивовых гибридов, разобраться в которых может не всякий специалист. Но это многообразие образовано за счет скрещивания всего девятнадцати видов. В наш продвинутый информационный век стыдно не разбираться в ивовой дендрофлоре Нижнего Дона, поэтому давайте внесем ясность.

Из девятнадцати видов рода Salix восемь представляют собой кустарники высотой от одного до восьми метров.
До 1 метра
Salix rosmarinifolia — Ива розмаринолистная с очень короткими черешками на побегах. Листья 4х1 см.
Salix starkeana — Ива Старке с яйцевидными листьями.
До 2-х метров
Salix aurita — Ива ушастая с серповидными прилистниками и листьями длиной 2 см
Salix caspica — Ива каспийская с листьями длиной 8 см, сизыми и жесткими
До 4-х метров
Salix cinerea — Ива пепельная
Salix aegiptiaca — Ива египетская с волнистыми листьями 16х4 см
Salix purpurea — Ива пурпурная с почти супротивными голубовато-сизыми листьями
До 8-ми метров
Salix triandra — Ива трехтычинковая с мелкопильчатыми листьями длиной до 16 см

Еще пять видов это древесные кустарники — выглядят они почти как обычные крупные кустарники, за исключением того, что у них выражен один или несколько главных стволов.

До 8-ми метров
Salix viminalis — Ива прутовидная с шелковисто-серебристой нижней стороной листьев размером 16х1 см
Salix dasyclados — Ива шерстистопобеговая с листьями  размером 16х4 см  и серым матовым опушеннием нижней стороны листа
Salix caprea — Ива козья с листьями размером 16х8 см
До 16-ми метров
Salix acutifolia — Ива остролистная, она же краснотал, она же красная верба, она же красная шелюга. Ей присущ налет на ветвях. Листья жесткие, размером 8х1 см
Salix daphnoides — Ива волчниковая, она же желтая верба и желтая шелюга. Ветви имеет толстые, листья размером 8х2 см.

Остальные шесть видов это деревья:
До 4-х метров
Salix mirsinifolia — Ива мирзинолистная с двухцветными пильчатыми листьями
До 8-ми метров
Salix matsudana — Ива Матсуды со змеевидно изогнутыми ветвями
До 16-ми метров
Salix babilonica — Ива вавилонская с листьями 16х2 см вытянутыми в косое острие и свисающими до земли ветвями
Salix pentandra — Ива пятитычинковая с кожистыми листьями, ширина которых в три раза меньше длины, а заостренная верхушка оттянута
Salix fragilis — Ива ломкая с плотными листьями длина которых в 5 раз больше ширины. Черешок с глубокой бороздкой и бородавками
До 8-ми метров
Salix alba — Ива белая с пильчатыми листьями, размером 8х2 см

Ну все-же просто, не так ли? Но поскольку любая классификация со временем забывается, я приготовил вам три простых мнемонических правила запоминания видов. Названия идут в порядке убывания высоты.

Кусты: Три пурпурных египетских циника косили у Риты старые розы
(triandra, purpurea, aegiptiaca, cinerea, caspica, aurita, starkeana, rosmarinifolia)

Древовидные кусты: давно окутывал капрал даже клады вынимал
(daphnoides, acutifolia, caprea, dasyclados, viminalis)

Деревья: альбом фрагментов пяти вавилонян мать Судана Мирзинян
(alba, fragilis, pentandra, babilonica, matsudana, mirsinifolia)

Последнее правило не очень удачное, но я так и не придумал ничего, что однозначно бы соотносилось с ивой Матсуда и мирзинолистной.

Математическая формализация единиц растительного покрова

Математическая формализация единиц растительного покрова

В основе «классических» методов классификации растительного покрова (Александрова, 1969) положены принципы булевой логики, которая опирается на следствие аддитивного свойства множеств (образование непересекающихся подмножеств при делении множества).

Для сложно устроенных (Растригин, 1981) природных систем, характерна не аддитивность, а эмергентность признаков.  Пренебрежение этим фактом ведёт к тому, что растительность внутри синтаксонов недостаточно охарактеризована, либо число синтаксонов неоправданно велико.

Используемые классификации не годятся для количественного представления выраженности тех или иных синтаксонов, что является тормозом для изучения структуры и динамики растительности. Требуется метод разделения растительного покрова на математически формализованные единицы.

Метод классификации растительности, который я предлагаю построен на обобщённом математическом аппарате теории множеств. Характеристика синтаксонов базируется на теории нечётких множеств (Заде, 1976).

Растительное сообщество представляет собой конечную группу, в связи с чем, признается дискретность пространственных границ. В тоже время, растительное сообщество не является примером непрерывного множества, поэтому описать его границу непрерывной, всюду дифференцируемой кривой невозможно. Таким образом, пространственные границы дискретны, но средствами эвклидовой геометрии выразить их невозможно (псевдоконтинуум).

Пространственные границы формализованы как мажорирующий контур растений. Если представить, что для каждой клетки растения характерны три координаты положения и координата времени, то мажорирующий контур будет проходить через клетки с максимальным значением координат. В самом простом случае это будет контур с параметрами равными максимальной высоте, длине и ширине растения, изменяющийся со временем, но сохраняющийся до момента гибели последней особи. В общем же случае, мажорирующий контур представляет собой объект с фрактальными границам.

Биологической основой новой классификации является трансформированный эколого-доминантный метод разделения растительного покрова (Александрова, 1969). Наличие эдификаторных свойств разной силы предполагается у всех особей сообщества. Основанием для выделения единиц растительности является степень обилия видов или групп видов. Она выражается через объем, занимаемый видами в пространстве (заполненность мажорирующего контура).

Основной единицей растительного покрова является специалитет – группа растений одного вида, целиком занимающая в пространстве объём своего мажорирующего контура.

Каждый специалитет обладает свойством истинности, выражающим степень его принадлежности к тому или иному синтаксону. Истинность характеризует степень заполненности мажорирующего контура органами растений. Примером абсолютно истинного  специалитета (истинность равна 1) можно считать накипной лишайник Rhizocarpon geographicum (L.) DC.:

IMG_1332

 

Большинство специалитетов имеет значительно меньшую истинность.  Так расчётная истинность еловых специалитетов на Северо-Западе России составляет в среднем 0,001-0,003.

Специалитеты объединяются в группы. Группы — это комплекс специалитетов в границах мажорирующего контура доминантного специалитета. Во многом этот класс напоминает эколого-ценотическую группу или тип леса в лесной типологии (Федорчук и др., 2005). В естественных лесах Северо-Запада России встречаются лишайниковая, кустарничковая, мелкотравная, неморальная, сфагновая, багульниковая, долгомошная, болотнотравяная, таволжная и приручейная группы (Голубев, 2012). Луга представлены насыпной, влажнозлаковой, злаковой и травяной группами (на основе данных: Нешатаев, Егоров, 2006). Поскольку мажорирующие контуры специалитетов (в том числе доминирующих) пересекаются, зачастую наблюдается пересечение групп.

Группы формируют формы. Формы — комплекс групп, занимающих в пространстве объем, ограниченный мажорирующим контуром групп с единой жизненной формой доминантов. Выделены древесные, кустарниковые, кустарничковые, травяные, моховые, лишайниковые, водорослевые, лиановые, подушковые и гетеротрофные формы.

Если особь вида s одновидового сообщества S={s1, s2, s3,…, sn} представить как множество клеток с параметрами: длина, ширина, высота, время s={(x1, y1, z1, t1) , (x2, y2, z2, t2),…, (xn, yn, zn, tn)}, то понятие специалитета можно формализовать как множество Sp={s1, s2, s3,…, sn}, такое, что:

Дальше в исходном тексте шли формулы, а так-же формализация понятий группы и формы. Но за давностью лет информация проебалась. Если не ошибаюсь, полный текст опубликован в сборнике материалов конференции «Математическое моделирование в экологии», что проходила в Пущино между 2010 и 2014 годами. Там же есть и недостающие формулы. Я их здесь публиковать не буду, поскольку, во-первых, у меня их почему-то нет под рукой, во-вторых, я сейчас еду в уазике и по тряской дороге пью пиво, а в-третьих, хуйню эту все-равно никто читать не будет, так что и так сойдет.

Допустимые пределы использования теории нечетких множеств в экологическом моделировании

Описаны допустимые пределы использования теории нечетких множеств, обусловленные синергетическим эффектом в природных системах

1. Введение

Успешное применение теории нечетких множеств (Заде, 1976) в технике привело к возрастанию популярности нечетких вычислений в других сферах, в том числе в экологическом моделировании. Моделирование растительного покрова с помощью нечетких множеств позволяет объединить континуальный и дискретный подход в рамках одной модели (Голубев, 2012). Это создает ошибочное ощущение универсальности данного подхода. Допустимые пределы использования теории нечетких множеств, как и факторы, обуславливающие эти пределы до сих пор не определены.

2. Применение теории нечетких множеств

Теория нечётких множеств представляет собой развитие классической теории множеств. В отличии от последней, в теории нечетких множеств один элемент может принадлежать одновременно нескольким множествам. При этом степень принадлежности его к тому или иному множеству выражается при помощи функции принадлежности (характеристической функции). Значение характеристической функции обычно является дробным числом в диапазоне от 0 (элемент абсолютно не принадлежит множеству) до 1 (абсолютная принадлежность элемента множеству) (Заде, 1976).

В качестве примера применения теории нечетких множеств в экологических моделях можно привести нечеткую типологию лесов Северо-Запада России (Голубев, 2012). Данная типология основана на новейших лесотипологических исследованиях (Федорчук и др., 2005) и принципах классификации нечетких множеств (Заде, 1976). Серии типов леса в типологии выделяются на основе обилия групп индикаторных видов. Для каждой серии характерна индикаторная группа с уникальным набором видов. Растительное сообщество может одновременно относиться к одной (истинной) серии или нескольким (переходным) сериям. Истинная серия характеризуется присутствием только одной индикаторной группы с суммарным проективным покрытием травяно-кустарничкового и мохово-лишайникового яруса 100 %. Показатель истинности серии рассчитывается как мера количественного сходства (например, коэффициент Чекановского (Словарь…, 1989)) между рассматриваемым растительным сообществом и истинной серией типа леса.

Одним из ключевых преимуществ такой типологии является возможность обоснованной интерполяции данных. Зная значение индикационных параметров (например, агрохимических почвенных показателей) в истинных типах леса (или типах с известной истинностью), мы можем рассчитать эти параметры для произвольного участка леса на основе его нечетких лесотипологических показателей (близости к тому или иному типу леса). Результаты расчетов будут содержать погрешность, иногда значительно искажающую результаты. Основной причиной данной погрешности является неприменимость теории нечетких множеств к описании природных систем, которая проявляется в возникновении синергетического эффекта при объединении различных множеств природных объектов.

3. Синергетический эффект при объединении нечетких множеств

Синергетический эффект — эффект взаимодействия нескольких систем, характеризующийся тем, что их совместное действие существенно превосходит простую сумму действий каждого отдельного компонента (Жилин, 2004). Частным случаем синергетического эффекта является эмергентность — свойство факторов образовывать при совместном влиянии новый фактор, отличный от исходных и от их суммарной мощности.

В нечетком типологическом ряду «лишайниковая-кустарничковая-мелкотравная» (серии типов леса) (Голубев, 2012), кустарничковая серия не является простой механической смесью лишайниковой и мелкотравной серий. В связи с этим индикационные показатели, рассчитанные на основе близости кустарничкового типа леса к лишайниковому и мелкотравному будут содержать определенную ошибку. Величина этой ошибки может быть использована как показатель мощности синергетического эффекта: чем больше расхождение реальных данных с расчетными, тем менее сообщество похоже на механическую смесь других растительных сообществ (и тем менее применимы к нему разработанные для других типов леса хозяйственные мероприятия).

4. Расширение пределов использования теории нечетких множеств

Из приведенного примера следует, что теорию нечетких множеств допустимо применять лишь для систем с незначительным синергетическим эффектом. С более примитивной лесохозяйственной точки зрения это устранимо за счет введения поправочных коэффициентов, рассчитанных указанным методом для каждого из типов леса. В то же время, невозможно построение на основе теории нечетких множеств аппарата, пригодного для анализа состояний детерминированного хаоса в природных системах.

Математическим аппаратом, расширяющим теорию множеств может служить аппарат субъективных вычислений, в котором изменение характеристической функции принадлежности элемента к одному из двух подмножеств не влияет на характеристическую функцию принадлежности элемента ко второму подмножеству.

5. Выводы

Применение теории нечетких множеств допустимо в системах с пренебрежимо малым синергетическим эффектом объединения систем. Ограниченно эту теорию допустимо использовать в практической деятельности с использованием поправочных коэффициентов на синергетический эффект (эти же коэффициенты возможно использовать в качестве меры тесноты взаимосвязи элементов в растительном сообществе). Для характеристики состояний детерминированного хаоса в экологических моделях применение теории нечетких множеств недопустимо.