Закон первой маски

Когда покупаешь водку, просят вначале надеть маску а после показать паспорт. Потом удивляются количеству ковидных скептиков. Ладно, зафиксируем мысль о том, что маски нужны и скопления народа опасны. Но вот перед нами кадры демонстраций из Белоруссии. Где ожидаемая вспышка заболеваний? Пусть Лукашенко — злобный диктатор и все скрыл, но тогда почему до сих пор не лежат по койкам протестующие Хабаровска?

Число заболевших растет, но это не мешает задавать вопросы, первый из которых: насколько органичен такой рост? Где число заболеваний отражает естественную динамику развития болезни, а где результат вызван особенностями тестирования и подсчета?

Так совпало, что мне надоело в очередной раз проверять степенные распределения на соответствие закону Бенфорда. Полтора века назад Саймон Ньюком изучая потертости страниц в сборниках логарифмических таблиц обнаружил любопытный феномен, который спустя шестьдесят лет обобщил Френк Бенфорд: В экспоненциальных распределениях каждое третье число начинается с единицы. Точнее, вероятность встретить единицу 30.1, двойку 17.6, тройку 12.5 и далее согласно разработанной Бенфордом формуле.

Этому закону соответствует огромное количество экспоненциальных (и как обобщенный случай — степенных) распределений. Учитывая закон и все ограничения, с помощью распределения Бенфорда можно проверить данные на естественность, поэтому использовать его приходится часто. Для автоматизации процесса я написал небольшую программу, которая проверяет частоту первых цифр из вашего распределения на соответствие распределению Бенфорда и в качестве демонстрации подключил статистику по заболеваемости ковидом в регионах России. Можете проверять любые ваши данные, хоть результаты голосования, хоть статистику по зарплате, хоть общее проективное покрытие oxalis acetosella, как в моем случае.

Ну а что-же ковид? Оказалось, что в распределениях суммарного количества заболевших наибольшие отклонения от распределения Бенфорда наблюдаются в Москве с областью и соседствующими регионами, Северном Кавказе, Татарии и Башкирии, Туве, Чукотке и Камчатке.

Распределения по количеству выздоровевших наиболее соответствуют закону Бенфорда вдоль границы с Казахстаном, юго-востоку (Приморье и Сахалин) и Северо-Западу (Карелия и Мурманская) России.

Распределения по количеству погибших от коронавируса наиболее близки к распределению Бенфорда в юго-западных, западно-уральских регионах, частично на юге Западной Сибири и в Приморье.

У меня есть предположения о причинах таких географических особенностей, но я бы хотел услышать комментарий специалиста. И это не потому, что я диссидент, а ровно напротив: я сторонник самого жестокого карантина: с применением боевого оружия и превращением всех институтов в шарашки.

Каждый день пандемии ждешь прорыва научной мысли, а вместо этого слышишь рекомендации намотать на лицо тряпку и сидеть по домам.

P.S. Спасибо всем, кто откликнулся на призыв о поиске сырых данных по заболеваемости в регионах.