Особенности городских деревьев

Поскольку мне довелось работать в области дендрологической инвентаризации, я скопил коллекцию типовых особенностей и повреждений деревьев в городе. Даже думал о разработке схемы тегирования в OpenStreetMap. Но, положа руку на сердце, эта коллекция, нафиг не нужна. А потому я решил обозреть ее в последний раз и отправить в глубокие архивы древности:



Корневая система


Ствол


Крона


Внешнее воздействие на дерево

Картографирование деревьев в городе

Картографирование деревьев в городе

Практикующие ботаники используют разные методы городской дендросъемки. Выбор зависит от исходных данных и ожидаемого результата. Самая трудная работа — обследование кгиоповских объектов, где от ботаника требуют подробную информацию о каждом дереве: породу, вид, местоположение, диаметр кроны и ствола в двух местах, контур кроны на плане, повреждения, заболевания, особенности (вплоть до ширины дупла и угла наклона ствола) и другую информацию. На другом конце списка — сбор данных для расчета восстановительной стоимости. Это ситуация при которой деревья все-равно вырубят под какую-нибудь стройку и необходимо лишь оценить нанесенный ущерб.

Если выйти за границы массовых методов, с одной стороны стоит добавить ультразвуковое обследование стволов и прочую фантастику, а с другой — картирование в OpenStreetMap, которое обычно даже не картирование, а так, «заодно дерево отметил». Сейчас в базе OSM около тринадцати миллионов деревьев, но мануала по полевому маппингу и обработке данных до сих пор нет. Появится он скорее всего не скоро (если вообще появится), поэтому я решил изложить опыт десяти интенсивных дней полевого маппинга деревьев, в результате которого удалось увеличить количество точек natural=tree на сотую долю процента. Это примерно полторы тысячи деревьев. Однако, не так важны сами деревья, как обнаруженная ущербность нынешней схемы тегирования городской растительности.

Для выхода в поле необходимо минимум две вещи: знание видов и полевые материалы. К сожалению, первое из мануалов не узнать: даже если выучить все определители, умение отличить один вид от другого приобретается только с опытом. Однако, если есть сомнения, рекомендую особое внимание перед выходом обратить на вид листьев, коры и самое главное: тип ветвления побегов для основных городских деревьев. Для Санкт-Петербурга это клен остролистный, липа, дуб, вяз, ясень, береза, тополь, осина, черемуха, рябина, ива, ольха серая и ольха черная, боярышник, вишня, яблоня, конский каштан, ель, сосна, лиственница, пихта и туя. Знание этих пород поможет вам в девяти случаях из десяти.

Полевые материалы каждый готовит под себя. Многие ботаники используют карту и бланк, но я убежден в недальновидности такого подхода. Если вам не требуется вносить много данных о каждом дереве — лучше сразу писать на карте. Это уменьшает количество работы, и снижает вероятность ошибки, поскольку пропадает потребность в проставлении номеров на карте и в бланке. Если данных много (как при обследовании объекта, который охраняет КГИОП), то на карте стоит лишь указывать местоположение дерева, его номер и контур кроны, а всю остальную информацию записывать на диктофон. Я указывал только местоположение, породу, высоту, диаметр, количество стволов и санитарное состояние по четырехбалльной шкале: такое количество данных можно вносить без всякого диктофона.

Полевые карты изготовил в QGIS, загрузив данные через QuickOSM — это такой модуль overpass для QGIS. Главное требование к полевым материалам — карты должны быть бледными и содержать только нужную информацию, в моем случае, это дома с номерами, дороги с подписями улиц и заборы.

Карта до выхода в поле

Кроме этого я отметил на карте границы зеленых насаждений общего пользования из питерского RGIS-a. Последнее я не рекомендую повторять, поскольку процедура сомнительна в плане лицензионной чистоты и помогает лишь ориентироваться (и то не всегда). Я спокойно признаюсь в этом по двум причинам: во-первых, никакие данные из посторонних источников в OSM не внесены, границы RGIS только помогают ориентироваться в больших дворах (вот аналогия: можно ли вносить название улицы на которой ты стоишь если ты пришел к ней используя условные карты от Google). Во-вторых, согласно OSM-Wiki эти данные доступны как общественное достояние (public domain). В любом случае, не так страшно использовать чужие данные, как умалчивать об этом.

Я работал в конце декабря (нашел время), что накладывало ряд сложностей. Короткий световой день, холод, затрудненное определение видов и полные газоны собачьих фекалий, которые в такую погоду не разлагаются неделями. Но хуже всего дождь от которого намокает карта. Дабы избежать простоев из-за непогоды и облегчить процесс письма я использовал планшетку для спортивного ориентирования. Она крепится к телу как столик у продавца папирос в начале двадцатого века, складывается при необходимости и позволяет накрыть карту или хотя-бы ее часть прозрачной пленкой. Единственный недостаток — видя эту штуку дворовые бабки проявляют повышенное внимание к картографу и отвлекают от работы. Еще немного устает спина, но это все-равно лучше любых испытанных альтернативных методов.

Планшетка для спортивного ориентирования

Планшетка для спортивного ориентирования

Размер планшетки определяет формат карт, в моем случае A5. По многолетнему опыту могу сказать, что это наиболее удобный формат для полевых работ. Главное, не забыть про обзорную карту:

Обзорная карта

Обзорная карта

Полевая работа не представляет большой сложности если не брать в расчет физиологические неудобства. Желательно отмечать деревья так, что-бы карта была ориентирована на север. Это не принципиально, но облегчает обработку. Важно меньше размышлять и больше делать. Для размышлений есть подготовительный этап, в поле это приводит к потерянному времени и ошибочному результату. Выбираете первое дерево, определяете направление движения и отмечаете на карте точки — местоположения ближайших 5-10 деревьев. Далее идете от дерева к дереву и для каждой точки записываете что-то типа «2л22+28у24», где 2 — количество стволов, л — липа, 22+28 — диаметры стволов на высоте груди в см, у — удовлетворительное состояние, 24 — высота в метрах.

Очень важно сохранять бланки в чистоте — вносить минимум исправлений, а те, что неизбежны не закрашивать, а просто аккуратно и однообразно зачеркивать. Иначе потом предстоят отдельные мучения по дешифрированию написанного. Удивительно, но этим банальным правилом пренебрегает огромное количество специалистов.

Информация на карте

Таким способом в день удается картировать около трехсот деревьев. Летом больше, но все-равно после третьей сотни наступает усталость и темпы работы заметно снижаются. После заполнения, карта выглядит так:

Карта после заполнения

Карта после заполнения

Здесь красным обведены границы — это уже результат камеральной обработки. Придя в тепло я прорисовываю границы съемки красным, здания черным и нумерую все деревья по порядку проводя через каждое дерево ходовую линию зеленого цвета. Важно, что-бы линия нигде не пересекала себя, а первое, последнее и каждое десятое дерево были подписаны. В этом вопросе необходима внимательность, поскольку ошибка или пропущенное дерево потом создадут много хлопот.

Карта с границами, зданиями и номерами

Теоретически, данные уже можно вносить в OpenStreetMap, но к сожалению OSM, который зародился как проект полевого картографирования, последний десяток лет развивается в направлении диванного маппинга. Вносить полевые данные с помощью JOSM или ID — это неоправданная трата сил и времени, поэтому прибегнем к дополнительным инструментам.

Первым делом вносим данные о деревьях в любой редактор, текстовый или табличный. Я использую WPS — это аналог Excel для линукса. Путем нехитрых манипуляций разбиваем формулу вида «2л22+28у24» на пять столбцов (количество, порода, диаметр, санитарное состояние и высота). В шестом стобце указываем номер дерева (по зеленой линии). Вносить лучше всего по порядку идя по зеленой линии от точки к точке. Когда все готово — переводим все в csv-формат (кому лень переводить — может подгрузить в QGIS модуль для импорта данных из табличных редакторов). На этом этапе создаем дополнительные столбцы: natural (все строки заполнены текстом «tree»), genus (род на латыни), genus:ru (род на русском), health (санитарное состояние), height (высота), kind:ru (порода).

Сканируем или фотографируем карты и привязываем их в QGIS. Если они не сильно измялись в поле и сканированы — для привязки достаточно трех точек и аффинной трансформации. В моем случае точек потребовалось больше, поскольку иначе как проективной трансформацией фотографию нормально не привяжешь.

Привязанная в QGIS полевая карта

Привязанная в QGIS полевая карта

После привязки создаем точечный слой и обклацываем все точки вдоль зеленой линии одну за другой, ничего не пропуская и не ставя лишнего. Это крайне важно, поскольку определяет как будут сцеплены атрибутивные данные с геометрией. Для контроля полезно включить отображение количества объектов в слое. Когда все готово, остается только создать в таблице столбец с целочисленными значениями и заполнить его формулой $id+1 — в результате каждой точке будет присвоен номер, под которым он упомянут в таблице с данными. Остается лишь связать геометрию с внешней таблицей и скопировать данные из привязанной таблицы в атрибуты слоя.

Внесение геометрии в QGIS

Внесение геометрии в QGIS

Сохраняем файл в формате geojson в WGS84 (EPSG:4326). Теперь через оверпас проверяем наличие деревьев в базе OSM на территорию обследованных районов. В моем случае таковых было всего пять. Сверяем их со своими данными и если все совпадает (при обследовании вы их нашли), а теги на деревьях не содержат важной информации — смело удаляем их через JOSM. Если не нашли, но вы в качестве своей работы уверены — тоже удаляйте.

Осталось только загрузить в JOSM ваш район работ, открыть файл geojson, копировать из него данные в слой openstreetmap и убедиться, что все на своих местах. У меня иногда вставленный слой по неизвестной причине съезжает, но это ошибка систематическая и исправляется элементарным перемещением.

JOSM с данными о деревьях

JOSM с данными о деревьях

Казалось бы, загружай в базу и радуйся. Но есть пару щепетильных моментов, на которые опытный осмер уже наверняка обратил внимание. Начнем с базового: а что именно мы вносим? Понятно, что деревья, но вот мы полторы тысячи деревьев осмотрели и ощупали. Самое время спросить: «Что такое дерево?». Сирень — дерево или нет? А липа? А дюжина лип, которые растут как кустарник? В OSM внесено не тринадцать миллионов деревьев, а тринадцать миллионов natural=tree, среди которых и трава, и кустарники, и деревья и все, что угодно.

Теперь наименование. Если следовать описанию тега natural=tree, мы должны указать вид (species), в крайнем случае род (genus). Подход логичный, но так делать нельзя. Могу ли я указать вид липы? Допустим, с очень большой погрешностью могу, благо их всего два в городе: платифиллос и кордата. А как быть с ясенями, у которых диагностический признак — почки, расположены на высоте трех человеческих ростов? А как быть с лиственницами, виды которых во всем Питере может нормально различить только один человек?

Для таких ситуаций есть род (genus). Но вот передо мной вишня. Если я внесу genus для вишни по всем правилам, то выйдет, что у меня никакая не вишня, а слива. Потому как вишня — это сливовый подрод (Prunus subgenus Cerasus). И черемуха, кстати тоже. А как быть с трактовкой разных таксонов? Никогда вы эту проблему не решите, если не признаете, что вносить вид в OSM столь же глупо, как и указывать для каждого дерева нуклеотидную цепь. Вид и род — это очень, очень, очень тяжело и сложно. То что определяем мы, называется «порода» — группа растений, выделенная на основе практической целесообразности. Это может быть и вид (конский каштан обыкновенный) и род (вяз) и подрод и все, что угодно. Хороший пример с тополями, которые разделяют на две породы: осину, которая populus tremula и тополь, который объединяет все остальные тополя.

А как обстоит дело с морфометрией? Есть circumference=* — окружность ствола в метрах. Но как быть, если стволов несколько? Как обозначить, что дерево является угрозой? Как тегировать кронированный обрубок тополя? Как тегировать особые случаи произрастания, например, когда береза вьется лианой по сосне? Или черемуха, ветви которой в четверть метра толщиной вросли в землю? Как обозначать скворечники и кормушки? А если в них живут белки? Хотя стоп, сейчас меня в нечеткое тегирование унесет, а я все это не для того рассказываю. Рассказываю я это для того, что неожиданно хороший повод для встречи образовался — поработать над схемой тегирования деревьев. Ну и еще немного для того, что-бы похвастаться. Что я, зря полторы недели корячился?

Дендроинвентаризация

Если увидите в парке или в лесу такого человека — не приставайте к нему с вопросами. Это жутко раздражает и отвлекает от работы. Человек просто изучает деревья.

И да, пора уже навсегда прекратить порочную практику использования полевых бланков.