Как политика на растительность повлияла

Существует только один тип растительности, толкование которого не вызывает споров — это растительность на голове. Остальные служат поводом если не для критики, то во всяком случае для нескончаемого геоботанического ворчания. Все потому, что ботаника наука эмпирическая: тут не до конца понятно, что такое растение вообще, а уж совокупность растений каждый описывает в зависимости от жизненного опыта.

Термин «растительность» относительно молод, популярен и часто спекулятивен. Иногда так называют даже флору, что совершенно неправильно. Флора — это перечень растений конкретного местообитания, растительность же включает и флору, и биометрию, и динамику, и ценотические связи. Понятие сложное, а потому, прежде чем говорить с геоботаником, стоит узнать какой из научных школ он симпатизирует.

Школ много: упсальская, франко-швейцарская, англо-американская, московская, ленинградская и другие. Если вникать в нюансы, то список получается длинный. Но принципиально они представляют три группы: условные американская, европейская и ленинградская (она же эколого-доминантная).

Самая понятная — американская. Ее суть в следующем: нам пофиг, что такое растительность, мы изучаем как она изменяется во времени. Сторонники этой школы без конца ищут у растительности климакс, споря о его единстве, альтернативности и безысходности.

Специфику ленинградской школы великий русский геоботаник Владимир Николаевич Сукачев точнее всего выразил во фразе: «Растительное сообщество — есть понятие чисто конкретное». Растительность в локальном месте — это не просто набор растений, а некий «сверхорганизм». Утрированно, можно привести аналогию муравейника, называть который «муравьиным домом» стыдно даже в книжках для дошколят. Ценотические связи (взаимоотношения растений) чрезвычайно важный элемент растительного сообщества, который определяет отличие растительности от флоры. Во многом благодаря Сукачеву у геоботаники появилось второе имя — фитосоциология или социология растений. Правда, лет пятьдесят назад геоботаники решили избежать обвинений в антропоцентризме и переименовали свою науку в фитоценологию.

Сторонники ленинградской школы выделяют растительность на основе доминантов (преобладающие виды) и эдификаторов (виды, создающие условия среды), что чаще всего одно и то-же. В их понимании растительные сообщества имеют четкие, ну или не очень четкие, но границы.

Европейская школа чаще всего ассоциируется с франко-швейцарской, а потому ее называют браун-бланкистской (в честь ботаника Жозиаса Браун-Бланке). К ней вполне можно отнести московскую и упсальскую геоботанические школы. Европейская школа соглашается с ленинградской в значимости ценотических связей, но никакого сверхорганизма в растительности не признает. Проще говоря: что выросло, то выросло. Почему сообщества растений в разных местах имеют сходный флористический состав? Да потому, что в этих местах другие растения не выживут. А может и выжили бы, да откуда семена возьмутся? Растительное сообщество — это когда разных растений случайно намешалось и что прижилось, то и растет. Границ у растительности никаких нет, все нечетко перетекает из одного в другое. А если границы есть, то обусловлены они либо абиотическими причинами, либо вы просто мало описаний сделали. Более того, это признала вся прогрессивная наука и только ботаник по имени Дю Ри никак не угомонится.

В европейской школе растительные сообщества выделяют на основе постоянно встречающихся видов и не важно, являются они доминантами или нет. У ботаника ленинградской школы ельник и сосняк — это два совершенно разных сообщества, а ельник черничный и ельник кисличный довольно близки между собой. У браун-бланкистов ельник и сосняк — это близкие сообщества, если под пологом вы найдете одинаковые растения.

Сторонники ленинградской школы критикуют браун-бланкистов, говоря, что их произвольное разделение растительности подобно тому «как хозяйка режет сыр». В ответ на это, браун-бланкисты говорят, что пришло время навсегда отказаться от архаичной «еловой догмы»

Откуда же такое разделение? Да все потому, что основоположники ленинградской школы, начиная с Каяндера вели исследования главным образом в лесах, где эколого-доминантный подход наиболее удобен и очевиден. Европейские же ботаники делали упор на изучение лугов, где редко можно выделить один доминантный вид. В окруженной лесами Москве огромную роль среди геоботаников играл Леонтий Григорьевич Раменский, который с 1928 года работал в… институте луговой и болотной культуры.

Так бы и продолжался этот нескончаемый спор, но вмешалась большая политика. Идеи Браун-Бланке впервые начали применять в Советском Союзе еще в семидесятых годах. Тогда на фоне мощнейшей ленинградской школы они казались чем-то диковинным, но хорошо зарекомендовали себя при описании безлесных территорий. А когда в девяностых все посыпалось, начались любопытные процессы.

С одной стороны, оказалось, что лесное хозяйство — это убыточная отрасль. Причем остается таковой до сих пор. Точнее сказать, оставалась — в 2007 году был принят Лесной кодекс в котором ни разу не упомянуто словосочетание «лесное хозяйство». Осталась только лесная промышленность, то есть лес сейчас это не «сверхорганизм» и не случайное сочетание растений, а прежде всего месторождение досок. Идея о том, что лесник как парикмахер, должен думать не о том, что состриг, а о том, что осталось, верна, но юридически закреплена лишь в виде благих намерений о «долговременном» и «неистощимом» лесопользовании. В таких условиях говорить о финансировании исследований лесной растительности не приходится, а значит и научная школа представлена старыми геоботаниками и черт знает кем на хоз-договорных подрядах.

С другой стороны, после распада Союза появилась замечательная возможность международного сотрудничества и участия в совместных грантах. Но для этого необходимо привести собственные методы в соответствие с европейскими. Здесь и оказалось, что хочешь не хочешь, а систему Браун-Бланке использовать придется. Эколого-доминантный подход весьма хорош, но довольно сложно применять его даже в таком проекте как составление карты циркумбореальной растительности, не говоря уже о «Karte der natürlichen Vegetation Europas», составленной под руководством Удо Бона еще в 2004 году.


Сегодня большинство практикующих геоботаников в России либо полностью перешли на классификацию Браун-Бланке, либо вынуждены периодически к ней обращаться. Ленинградская школа кажется чем-то устаревшим, особенно в кругу фанатов Бориса Михайловича Миркина. Спасает эколого-доминантный подход только два обстоятельства. Во-первых, русская бюрократия посильнее ветреных научных воззрений. Распад страны еще не повод менять нормативы и стандарты. Мы не задумываемся, но всякая работа в лесу по-прежнему основана на трудах Морозова, Сукачева, Каяндера, Орлова, Арнольда и других натуралистов.

Во-вторых, эколого-доминантный подход в сообществах с явными эдификаторами действительно себя оправдывает, так почему бы его не использовать? Еще Мао Цзэдун говорил: «Пусть расцветают все способы классификации растительности». Тем более, что в свете последних открытий в топологии, многие разногласия между школами теряют всякий смысл. Взять ту же проблему дискретности/континуальности растительного покрова. Сколько было споров по этому поводу, а ларчик просто открывался: не надо применять геометрию Эвклида к объектам, для которых она не предназначена.

Едва ли стоит сейчас представлять растительные сообщества как «сверхорганизм», но и говорить о совершенной случайности комбинаций растений тоже довольно странно: все-таки ценотические связи часто играют в сообществах не меньшую роль, чем почвенные и климатические факторы. Достаточно вспомнить хотя-бы легендарный «Эффект группы у растений» Юрия Владимировича Титова. Ботаника — наука, увы, эмпирическая и склонна истолковывать увиденное в рамках текущей парадигмы.

Чем бы ни оказались растительные сообщества в действительности, главное что-бы это как можно меньше зависело от политики, моды и грантовых претензий. Иначе исследовать, использовать и охранять мы будем не реальность, а жизненный опыт предшественников.

fleur.js

Оценка кормовых угодий на JavaScript

Заголовок кривой, но так вернее — я пишу статью в междисциплинарный вакуум: программисты бросят читать на втором слове, а ботаники на четвертом. По этой причине изложу мысль от лица человека, который геоботанику с программированием в гробу видал.

Представим, что вы заимели в распоряжение некоторую площадь земли и намереваетесь распорядиться ей по хозяйски. Решив финансовые, кадастровые и прочие вопросы вы неизбежно придете к вопросу: «Какова земля по своим качествам?». Годится ли для посадки помидоров или кроме кривой сосны ничего не вырастет? Какой цемент выбрать для фундамента: исходя из сухой почвы или периодически подтопляемой? Почему у соседа вызревает полна жопа огурцов, а у вас дохнет последний подорожник? Потому, что в почве элементов не хватает или соседские коровы все вытоптали?

Когда участок мал, ответ познают органолептическим методом. Но что делать, если вам нужны точные результаты? Например, ваша сестра вышла замуж за премьер-министра и вы завладели миллионами гектаров угодий. Первая мысль — отобрать пробы почв из разных мест и отдать в физико-химическую лабораторию. Идея хороша, но есть три «но». Во-первых, это будет стоить безумных денег. Во-вторых, физико-химические свойства почвы постоянно меняются. Прошел дождь — и вот вам иное соотношение растворимых солей. Выглянуло солнце — изменилась влажность. В третьих, и это самое главное, вам необходимо знать не абсолютные концентрации микроэлементов, а то, насколько успешно они поглощаются растениями.

Логично оценить угодья по местным растениям. Если условные редька и одуванчик нуждаются в одинаковых условиях, значит поле одуванчиков подходит для редьки. Это примитивная, но верная мысль. Преимущество растений в длительном росте, который накапливает свойства территории за большой период. Кроме того, изучая растительность мы снижаем риск ошибки, связанной с бочкой Либиха.
Бочка Либиха

Бочка Либиха — принцип названный по фамилии немецкого профессора. В скучной экологической литературе он чаще упоминается как закон лимитирующего фактора. Наполним водой деревянную бочку, которую сколотили из досок разного размера. По заполнению, вода начнет вытекать через самую короткую доску. Наша редька будет дохнуть именно от самого проблемного элемента. Мы проверили все: азот, фосфор, калий, серу, железо и кучу других элементов — все в порядке. Но случайно забыли про марганец и вот наша условная редька уже в точечных пятнах хлороза тщетно пытается синтезировать аскорбиновую кислоту, дожидаясь малейшего повода для смерти. Условный одуванчик реагирует на всю совокупность физико-химических условий произрастания. Если он бодр и весел, за редьку можно не переживать.

Жизнь устроена сложнее наших условностей. Не бывает двух организмов, а уж тем более видов с одинаковыми требованиями к условиям обитания. «Что русскому хорошо, то немцу смерть» в переводе на экологический язык называется нормой реакции и выражается в кривой жизнедеятельности:
Кривая жизнедеятельности

Принцип влияния экологических факторов на организм выражается пословицей «Все хорошо в меру». Задача — сравнить между собой «меры» различных видов и применить к ним школьный принцип «меньше большего, больше меньшего». Если мы нашли одуванчик, значит условия жизни для одуванчика подходят. Если рядом с одуванчиком сныть, значит условия жизни подходят для одуванчика и сныти одновременно. Если мы собрали тридцать разных видов, значит условия подходят одновременно для каждого из них. Чем больше видов, тем уже диапазон факторов произрастания:
Сужение диапазона факторов произрастания

Теоретически, мы можем построить такие кривые для любого фактора окружающей среды (вопрос эмергентности опустим — это тема долгого и сложного разговора). Нас не волнует медианное значение влажности почв. Мы хотим знать, достаточно ли влаги растениям? Это не одно и тоже: весной воды хоть залейся, но растения живут в условиях физиологической сухости, поскольку не могут впитать воду из холодной почвы. Вопрос шкалирования («в каких единицах измерять») решается принципом канторово-пелевинской «сиськой в себе». Рисуем пустую стобалльную шкалу, после идем в самое сухое место, определяем найденные растения и вписываем их в левую часть шкалы. Потом идем в самое сырое место и вписываем местные растения в правую часть шкалы. После делаем несколько десятков тысяч описаний из разных мест и расставляем на шкале встреченные виды.

В одну из ночей опустите луч фонарика вертикально вниз. На землю ляжет тень от травы — проекция растений на плоскость. Если забыть, что луч бьет из одной точки или взять громадный прожектор, то площадь тени будет пропорциональна густоте растений. В геоботанике этот показатель называется проективным покрытием. Глазомерно он вычисляется как доля покрытой растениями территории. Сумма проективных покрытий всех видов больше общего покрытия травостоя, поскольку разные виды перекрывают друг друга. Псевдоматематики называют проективное покрытие вероятностью обнаружения вида в точке со случайными координатами или говорят о других диких концепциях, но на практике без инструментов никто не способен оценить густоту растений точнее 5-10 процентов (хоть все говорят, что могут), поэтому описание дополняют словами «единично», «незначительно» и прочей гуманитарной фигней.

Идя по градиенту влажности от сырого к сухому месту, вы встретите новые виды. Пока еще чахлые и редкие. Они едва выживают при такой влажности. Скоро этих растений станет больше. В идеальных условиях проективное покрытие возрастет до ста процентов — вспомните непроходимые заросли крапивы urtica dioica. На подходе к сухому месту проективное покрытие уменьшается, в сухих условиях остаются лишь единичные растения. В очень сухих ваши они уступают другим видам. За время похода вы пройдете несколько куполообразных изменений проективного покрытия, которые вспомните составляя шкалу:
Градиент изменения условий среды

Когда первая шкала готова, делим весь массив описаний на группы по влажности территорий и для каждой группы тем же методом строим шкалу «бедность-богатство-засоленность». Затем итеративно повторяем процесс для переменности увлаженения, аллювиальности почв, пастбищной дегрессии (вытоптанности) и чего душа пожелает.

Для работы необходимы десятки лет, миллиарды рублей и армия ботаников. Сегодня такие ресурсы получить невозможно, но по счастью кровавый сталинизм оставил в наследство не только сопливый дудевский фильм, но и результат работы института луговой и болотной культуры (сейчас НИИ кормов имени Вильямса), где под руковоством Л.Г. Раменского подготовлена прекрасная монография «Экологическая оценка кормовых угодий по растительному покрову». Книга содержит короткую пояснительную записку, методы анализа и таблицу на сотни страниц, где указано размещение видов растений на экологических шкалах в зависимости от проективного покрытия.
Книга Экологическая оценка кормовых угодий по растительному покрову

Свыше полувека работа с этой книгой выглядит так: геоботаник описывает проективные покрытия видов на площадке, возвращается домой, достает миллиметровку и рисует на ней шкалу влажности (сто двадцать единиц). Смотрит на значение проективного покрытия первого вида, находит этот вид где-нибудь на триста седьмой странице и откладывает на миллиметровке указанный в книге диапазон. Потом второй вид, потом третий и так до конца. Вид а: от сорока до пятидесяти, вид б: от сорока пяти до семидесяти, вид в: от двадцати до сорока восьми. На основе «больше меньшего, меньше большего» оцениваем увлажнение участка от сорока пяти до сорока восьми баллов. Потом переходим к вычислению богатства почвы, потом к остальным показателям. Спустя несколько часов беремся за другое описание.

Это не единственный метод, но остальные еще хуже. Тратить на это жизнь в двадцать первом веке невыносимо, поэтому ботаники забросили шкалы на антресоль и достают только студентам показать. За минувшие десятилетия технология нисколько не развилась и видимо до следующего витка репрессий останется в забвении.

Казалось бы, любой первокурсник-технарь напишет алгоритм за пару часов, любой школьник, отличающий инкремент от компиляции закодит его за вечер. Все просто как две копейки. Но все программные реализации (включая мою работу десятилетней давности) напоминали сплетенные из вареных макарон костыли для безруких. Потому что легче «Анну Каренину» на машинный язык перевести, чем автоматизировать работу с экологическими шкалами Раменского.

Проблема исключительно гуманитарная. Ботаники — от студентов до докторов наук до сих пор не отличают электронную информацию от цифровой. Наука о растительности — это пещера в котором обитает карго-культ технологического развития. Попросите любого выслать метаданные описаний — столкнетесь с непониманием. Договоритесь о данных в цифровом виде — получите на почту вордовский файл с таблицами. Гусиные перья сменила печатная машинка, печатную машинку компьютер, но сама технология изучения растительности осталась на уровне гусиных перьев.

Геоботаническое описание обычно содержит в себе метаданные (где, кем, когда и др.), описание древостоя (при наличии оного и отсутствии отдельных таксационных работ), подроста, подлеска и таблицы проективных покрытий травяно-кустарничкового и мохово-лишайникового ярусов. Камеральная обработка сводится к переносу данных в эксель, часто в том же виде, в каком они представлены на бланке. Форма бланков у всех разная, поэтому данные разных авторов не сравнимы без мучительной корректорской работы. Я опускаю разность методик, разность понимания видов, здесь разговор только о технической стороне вопроса.
Образец геоботанического описания

Без общепринятого формата, любой код автоматизации придется переписывать под каждого автора. Но это не спасет без решения проблемы субъективных оценок. Нельзя вместо оценки проективного покрытия скормить алгоритму понятия «единично», «изредка», «две куртины» и прочий бред (все из реальных описаний). Предположим, мы исключим такие данные из выборки. Если речь об экологическом шкалировании, то это допустимо. Но следом возникает проблема таксономии.

Линней, работая с номенклатурой не думал о том, что латынь уйдет в прошлое, а коробка размером с небольшой саквояж уместит в себе всю ботаническую литературу. Сегодня виды сохраняют латинское название (и это правильно), но саму латынь никто не помнит, герундий от герундива не отличает, рода путают между собой. В результате окончания видов обычно записаны с ошибками. Другое проблемное место — нечитаемые буквы. Попробуйте спустя месяц по памяти верно воспроизвести krascheninnikovii, krascheninnikoviana, или krascheninnikoviorum. Тут ботаники с лицом честного гаишника воскликнут, что они, дескать все выверяют по справочнику Черепанова. Клевер луговой у них трифолиум пратенсе, а клевер ползучий — амория репенс. Не верьте. При мне за несколько лет луговик извилистый из дешампсии стал лерхенфельдией, а из последней превратился в авенеллу. Все обсуждают подобные мелочные вопросы и никто не ничего хочет менять всерьез. А без изменений весь накопленный материал стоит дешевле макулатуры.

Я давно не работаю в государственном институте. Пол-месяца ввода, пол-месяца обработки и месяц дальнейшей психотерапии в мой прайс не включен, поэтому пришлось уйти от ботанических практик и минуя табличные редакторы, вводить данные сразу в виде js-объекта (в данные внесены искажения по условиям контракта, комментарии добавил для наглядности):

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
var descript = [
{
time:20160602,
note:'GR-0602-1',
tags:'Сосняк, Мяглово-Карьер',
lat:59.82739,
lng:30.69896,
datum:'4326',
author:'S.N.Golubev',
feedback:'schwejk-rpnt@rambler.ru',
license:'CC-BY-NC-SA-3.0',
source:'fieldobserve',
aream:2411,
dendro:{   /*Характеристики древостоя*/
	allvolumemcb:329,   /*Запас, куб. м*/
	allfullmsq:34.4,    /*Абсолютная полнота, кв. м*/
	pins__sylrs:{       /*Данные по сосне - pinus sylvestris*/
		volumemcb:329,   /*Запас, куб. м*/
		fullmsq:34.4,    /*Абсолютная полнота, кв. м*/
		diasm:23,        /*Средний диаметр, cм*/
		heightm:24.7,    /*Высота, м*/
		age:70,          /*Возраст, лет*/
	},
},
grass:{   /*Данные по живому напочвенному покрову*/
	allcover:50,   /*Общее проективное покрытие яруса*/
	cover:{        /*Повидовое проективное покрытие*/
		vacnm_myrls/*Черника - Vaccinium_myrtillus_L*/:20,
		vacnm_vitd/*Брусника - Vaccinium_vitisidaea_L*/:30,
		conlr_majls/*Ландыш - Convallaria_majalis_L*/:5,
		trils_eurp_/*Седмичник - Trientalis_europaea_L*/:0.1,
		desps_flexs/*Луговик - Deschampsia_flexuosa_Trin*/:10,
		melrm_prans/*Марьянник - Melampyrum_pratense_L*/:0.1,
		luzl__pils_/*Ожика - Luzula_pilosa_L_Willd*/:0.1,
		calln_vulrs/*Вереск - Calluna_vulgaris_L_Hull*/:0.1,
		charn_anglm/*Кипрей - Chamerion_angustifolium_L_Holub*/:0.1,
		fragr_vesc_/*Земляника - Fragaria_vesca_L*/:0.1,
		soldg_virgr/*Золотарник - Solidago_virgaurea_L*/:0.1,
		maimm_biflm/*Майник - Maianthemum_bifolium_L_FW_Schmidt*/:0.1,
		desps_cests/*Щучка - Deschampsia_cespitosa_L_Beauv*/:0.1,
		},
	},
undergrass:{/*Данные по мохово-лишайниковому ярусу*/
	allcover:40/*Общее проективное покрытие яруса*/,
	cover:{
		polhm_specs:0.1/*Политрихум*/,
		plezm_schbr:40/*Плеуроциум*/,
		},
	},
},
]

Структура данных повторяет бланк описания (метаданные-древостой-живой напочвенный покров-мохово-лишайниковый ярус). Видам с незначительным обилием присвоено проективное покрытие 0.1%. Видовые названия записаны в виде одиннадцати символов: пять на род, пять на вид и символ нижнего подчеркивания между ними. Род и вид преобразуются в код вида по такому принципу:
— Первые три буквы таксона берутся без изменений (Convallaria — con);
— Последние две соответствуют двум последним согласным таксона (Convallaria — lr);
— Если букв в таксоне меньше пяти, пропуски заполняются нижним подчеркиванием (Poa pratense — poa___prans);
— Если после первых трех букв одна согласная или согласных нет — пустые места заполняются нижним подчеркиванием (Luzula_pilosa — luzl__pils_).

Это не самый удачный принцип, поскольку требует исключений. Например, одуванчики Taraxacum laticordatum и Taraxacum latisectum кодируются одинаково: tarcm_lattm. К более простому решению, которое обеспечивает автоматическую кодировку списка таксонов я пока не пришел. К счастью исключения редки даже для региональной флоры, для локальной совсем незначительны и легко отлавливаются простой проверкой по сортированному массиву.

После я перевел таблицу из книги Л. Г. Раменского в js-массив следующего вида:

1
2
3
4
5
6
7
8
9
10
11
12
var ramen = [
["КОД", "ВИД", "ШКАЛА", "ЗОНА", "ПОЧВА", "ПОКРЫТИЕ", "MIN", "MAX"],
["acalm_punns", "Acanthophyllum pungens (Bunge) Boiss.", "water", false, false, 0.3, 10, 15],
["acalm_punns", "Acanthophyllum pungens (Bunge) Boiss.", "water", false, false, 0.1, 8, 1000],
["acalm_punns", "Acanthophyllum pungens (Bunge) Boiss.", "rich", false, false, 0.3, 12, 15],
["acapr_schhr", "Acarospora schleicheri (Ach.). Mass.", "water", false, false, 2.5, 15, 19],
["acapr_schhr", "Acarospora schleicheri (Ach.). Mass.", "water", false, false, 0.3, 11, 22],
["acapr_schhr", "Acarospora schleicheri (Ach.). Mass.", "water", false, false, 0.1, 10, 35],
["acer__plads", "Acer platanoides L.", "water", false, false, 0.1, 65, 71],
["acer__plads", "Acer platanoides L.", "water", false, false, 0, 0, 91],
...
]

Массив состоит из 11 673 элементов, включая заголовок. Каждый элемент содержит информацию о видовом коде, таксоне, экологической шкале, минимальном и максимальном балле шкалы. Информация о типе почв и природно-климатической зоне отсутствует, но на случай развития проекта для этих данных оставлено место. В тех случаях, когда минимальный балл в книге не указан, в таблице стоит 0. Если не указан максимальный балл, в таблице стоит 1000.

Скрипт расчета Fleur.js содержит всего полторы сотни строк, но его следует сократить вдвое, поскольку вторая функция на 99% дублирует первую. На момент написания я вконец обленился и просто скопипастил свою же функцию, дополнив ее несколькими строками. Функция «ramenall(e)» подхватывает первое описание в серии, переводит абсолютные значения проективного покрытия из геоботанического описания в группы проективных покрытий шкал Л. Г. Раменского (единично-0.1, 0.1-0.3, 0.3-2.5, 2.5-8, 8 и более процентов). После сравнивает видовые списки из описания и таблицы экологических шкал на основе общего ключа кода видов. Найдя совпадение в коде, функция заполняет массив номером и таксонами описания с присвоением минимального и максимального балла для каждого вида. Если для вида информация отсутствует, скрипт выдает «-Infinity, Infinity;». После программа переходит к следующему описанию из серии. Когда описания заканчиваются, программа выводит собранный массив на html-страницу.

Функция «ramenbase(e)» выполняет те же самые операции, только для каждого описания в серии формирует массив с минимальными и максимальными значениями баллов. Из массива минимальных баллов отбирает наибольший, из массива максимальных — наименьший. Итогом выпадает таблица с номером описания, минимальным и максимальным значением на экологической шкале.
Больше меньшего, меньше большего

Обе функции потребляют на вход одинаковые аргументы: «rich» — богатство и засоленность почвы, «water» — влажность почвы, «waterwave» — переменность увлажнения, «alluvium» — аллювиальность почвы и «degrade» — пастбищная дегрессия.

Качество кода оставляет желать лучшего, но поскольку он написан три года назад по дороге из Кингисеппа в деревню Лисино-Корпус Ленинградской области, я доволен и без нужды ничего менять не планирую.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
// Полный расчет (значения для всех видов)
function ramenall(e){
 
  for(var a=0; a<descript.length; a++)
  {
	  var gbo = descript[a]; // Текущее описание в обработке
	  var spec=[];           // Вид
	  var pokr=[];           // Проективное покрытие в процентах
	  var pokrball=[];       // Балл покрытия по Раменскому
	  var spectable=[];      // Обертка для spec, pokr, pokrball
 
// Перевод % покрытия в % покрытия по Раменскому	  
	  for(var key in gbo.grass.cover)
	  {
		  spec.push(key);
		  pokr.push(gbo.grass.cover[key]);
		  if(gbo.grass.cover[key]>=8.0 &&
				gbo.grass.cover[key]<100){pokrball.push(8.0);}
		  if(gbo.grass.cover[key]>=2.5 &&
				gbo.grass.cover[key]<8.0){pokrball.push(2.5);}
		  if(gbo.grass.cover[key]>=0.3 &&
				gbo.grass.cover[key]<2.5){pokrball.push(0.3);}
		  if(gbo.grass.cover[key]>=0.1 &&
				gbo.grass.cover[key]<0.3){pokrball.push(0.1);}
		  if(gbo.grass.cover[key]>=0.0 &&
				gbo.grass.cover[key]<0.1){pokrball.push(0.0);}
		}
 
// Заполнение таблицы для сравнения со шкалами    
	  spectable.push(spec);
	  spectable.push(pokr);
	  spectable.push(pokrball);
 
// Сравнение со шкалами   
	  for(var i=0; i<spec.length; i++)
	  {
		  for(var k=0; k<ramen.length; k++)
		  {
			  if(spectable[0][i]==ramen[k][0] && //Код вида
				ramen[k][2]==e && // Шкала (указана в HTML)
				ramen[k][3]==false && // Природная зона (игнорируется)
				ramen[k][4]==false && // Тип почвы (игнорируется)
				ramen[k][5]==spectable[2][i] // Проективное покрытие
				)
				{
// Публикация отчета в HTML
				var str = document.getElementById('tableResult');
				var add = str.insertRow(-1);
				var addTr = document.createElement("tr");
				var addTd = document.createElement("td");
					addTd.innerHTML=descript[a].note+", ";
					addTr.appendChild(addTd); // Номер описания
				var addTd = document.createElement("td");
					addTd.innerHTML=ramen[k][1]+", ";
					addTr.appendChild(addTd); // Название вида
				var addTd = document.createElement("td");
					addTd.innerHTML=spectable[1][i]+"%,      ";
					addTr.appendChild(addTd); // Покрытие
				var addTd = document.createElement("td");
					addTd.innerHTML=ramen[k][6]+",      ";
					addTr.appendChild(addTd); // Максимум
				var addTd = document.createElement("td");
					addTd.innerHTML=ramen[k][7];
					addTr.appendChild(addTd); // Максимум
				str.appendChild(addTr);
				};
		};
	};
};
}
 
// Краткий расчет (классический, результаты для пробной площади в целом)
function ramenbase(e){
	for(var a=0; a<descript.length; a++)
	{
		var gbo = descript[a];
		var spec=[];
		var pokr=[];
		var pokrball=[];
		var spectable=[];
 
		for(var key in gbo.grass.cover)
		{
			spec.push(key);
			pokr.push(gbo.grass.cover[key]);
			if(gbo.grass.cover[key]>=8.0 &&
				gbo.grass.cover[key]<100){pokrball.push(8.0);}
			if(gbo.grass.cover[key]>=2.5 &&
				gbo.grass.cover[key]<8.0){pokrball.push(2.5);}
			if(gbo.grass.cover[key]>=0.3 &&
				gbo.grass.cover[key]<2.5){pokrball.push(0.3);}
			if(gbo.grass.cover[key]>=0.1 &&
				gbo.grass.cover[key]<0.3){pokrball.push(0.1);}
			if(gbo.grass.cover[key]>=0.0 &&
				gbo.grass.cover[key]<0.1){pokrball.push(0.0);}
		}
 
		spectable.push(spec);
		spectable.push(pokr);
		spectable.push(pokrball);
 
		var ecoscalemin=[];// Шкала минимумов
		var ecoscalemax=[];// Шкала максимумов
 
		for(var i=0; i<spec.length; i++)
		{
			for(var k=0; k<ramen.length; k++)
			{
				if(spectable[0][i]==ramen[k][0] &&
				ramen[k][2]==e &&
				ramen[k][3]==false &&
				ramen[k][4]==false &&
				ramen[k][5]==spectable[2][i]
				)
				{
					ecoscalemin.push(ramen[k][6]);
					ecoscalemax.push(ramen[k][7]);
				};
			};
		};
 
		var str = document.getElementById('tableResultKratk');
		var add = str.insertRow(-1);
		var addTr = document.createElement("tr");
		var addTd = document.createElement("td");
			addTd.innerHTML=descript[a].note+",  ";
			addTr.appendChild(addTd); // Номер описания
		var addTd = document.createElement("td");
 
			// Максимальное значение шкалы минимумов
			addTd.innerHTML=Math.max.apply(Math, ecoscalemin)+",  ";
			addTr.appendChild(addTd); // Минимум
		var addTd = document.createElement("td");
 
			// Минимальное значение шкалы максимумов
			addTd.innerHTML=Math.min.apply(Math, ecoscalemax)+";  ";
			addTr.appendChild(addTd); // Максимум
		str.appendChild(addTr);
	};
}

Остается сверстать простую html-страницу, без всяких цээсэсов, назначить функции кнопкам и радоваться жизни. Полноценный анализ тестового набора с помощью миллиметровки у меня бы занял дней десять, может больше. Наверняка есть профи, кто сделает это быстрее, но даже супермен не рассчитал бы показатели для сотни описаний за долю секунды.

Финализировать эту эпопею нужно тремя вопросами: почему JavaScript?, что дальше? и как использовать полученные результаты анализа?. JavaScript — потому что эти расчеты иногда требуется выполнять на чужих компьютерах без установленного R, Wine или другого софта. Что дальше — не знаю. Есть пару идей, но я три года ничего не менял, могу еще три года ничего не менять. А как использовать результаты я не расскажу, поскольку строки этой статьи все-равно никто не увидит. Программисты бросят читать на втором слове, а ботаники на четвертом.


По адресу городшахты.рф/source/fleur/ лежит готовая к использованию программа. Можете указать ссылку на свой набор геоботанических описаний в указанном выше формате и рассчитать богатство, увлажнение, переменность водного режима, аллювиальность и пастбищную дегрессию почв.
Полноценное теоретическое обоснование, альтернативные методы и материалы для контроля доступны в книге: Л. Г. Раменский, И. А. Цаценкин, О. Н. Чижиков, Н. А. Антипин «Экологическая оценка кормовых угодий по растительному покрову» Всесоз. науч. -исслед. ин-т кормов им. В. Р. Вильямса. М. : Сельхозгиз , 1956 470, [2] с.: ил., 1 л. граф.

Деревья на пробной площади

Проба номер три

Одним из важнейших объектов исследования в отечественном лесоводстве являются постоянные пробные площади — ограниченные территории, на которых раз в несколько лет производится замер высоты, диаметра и других биометрических показателей деревьев. Попутно при этом описывают живой напочвенный покров, закладывают почвенные прикопки и фиксируют прочие наблюдения. В теории, эти данные накапливаются год за годом, а их анализ дает возможность проследить динамику развития растительного сообщества, что необходимо для объективного прогноза и экстраполяции данных.

На практике эти пробные площади нахуй никому не нужны. Как и отечественное лесное хозяйство, которое издревле держалось на подневольных, а когда люди закончились, накрылось пиздой в которую глянуть страшно. Погуляйте по дождливой лесной дороге — сразу поймете, почему единственным возможным видом достойного заработка в лесу являются концентрированные рубки средствами крупных лесопромышленных компаний.

Не думайте, что я вещаю из глубин пессимизма и депрессии. Наоборот, меня такая ситуация радует и любые попытки позитивных изменений я встречаю тревожным скепсисом: про возрождение лесного хозяйства в России обычно вспоминают отправляясь на постройку очередного ГУЛАГа.

Но хотя бы сегодня, давайте забудем про разных пидарасов и окунемся в мир статистики. Тем более, что процесс исследования постоянных пробных площадей, даже при отсутствии в нем всякого смысла, остается очень увлекательным занятием. Примерно как онанизм. Поэтому давайте уединимся и пока никто нас не спалил, посмотрим на данные сплошных перечетов древостоя, проведенные на одной из постоянных пробных площадей в Ханты-Мансийском автономном округе Западной Сибири.

Перечеты проведены разными исследователями в 2002 (З.Я. и В.З. Нагимовы), 2008 (Г.М. Кукуричкин) и 2018 году на ограниченной площади в 0,4 гектара. Все деревья на площади пронумерованы, на каждое дерево нанесена линия на высоте которой измеряется диаметр ствола. Изначально, эта высота должна составлять ровно 1,3 метра, но спустя шестнадцать лет, уровень ее колеблется между 1.0-1.7 м от шейки корня. Предположительно, это можно объяснить динамикой микрорельефа, хотя состояние пробы в целом создает впечатление того, что при закладке создатели были в говно пьяны. Древостой сложен лиственницей, пихтой, кедром, елью и березой, развит подрост и подлесок, живой напочвенный покров представлен лесными кустарничками и видами эвтрофных местообитаний (кислица, аконит, майник и др.). Если не смотреть на породный состав — типичный буреломный кисличник.

Первое, что необходимо сделать перед началом любой работы — привести все данные в машиночитаемый вид. Отдельно замечу: не в электронный, а именно в машиночитаемый, пригодный для автоматической обработки. Все эти бесконечные ворды, пдф-ы и эксели в девяносто девяти случаях из ста представляют собой богомерзкую хуету, которая для анализа пригодна ничуть не лучше, чем запись в полевом дневнике. При этом неизбежна стандартизация данных. В итоге разношерстные тексты сводятся в единую таблицу вот такого вида:

ele;num;d02;h02;l02;d08;d18;h18;l18 abies;1;19;NA;TRUE;20;21;NA;TRUE picea;2;38;NA;TRUE;38;37;NA;FALSE abies;3;12;NA;TRUE;12;13;NA;TRUE

Таблица целиком, пояснения и обозначения заголовков
Заголовки:
ele — (текст) — порода;
num — (текст) — номер в перечете, нанесен на ствол дерева;
d02 — (число) — диаметр в см ствола согласно перечету 2002 года;
h02 — (число) — высота в м ствола согласно перечету 2002 года;
l02- (логическое) — состояние дерева в 2002 году. TRUE — живое, FALSE — мертвое;
d08 — (число) — диаметр в см ствола согласно перечету 2008 года;;
d18 — (число) — диаметр в см ствола согласно перечету 2018 года;;
h18 — (число) — высота в м ствола согласно перечету 2018 года;
l18- (логическое) — состояние дерева в 2018 году. TRUE — живое, FALSE — мертвое;

Породы:
abies — пихта;
betula — береза;
larix — лиственница;
picea — ель;
pinsib — кедр;
none — дерево, по разному определенное в разные перечетах. Порода не установлена;

Прочее:
NA — нет данных

При составлении таблицы:
1. Отсутствующие значения (дерево выпало, еще не выросло, пропущено в ходе перечета или замер для него не проводился) обозначаются как NA;
2. В качестве названия вида используется название данное в перечете 2002 года в случае:
— если оно соответствует названию вида по перечету 2018 года
— если при перечете 2018 года это дерево было представлено сухостоем или валежом (полагая, что ошибка в определении живого дерева менее вероятна);
3. Если название дерева по перечету 2002 года не соответствует названию дерева по перечету 2018 года, дерево считается неназванным (неизвестно, кто именно допустил ошибку);
4. Значения диаметров и высот округлены до целых чисел (процедура необязательная, но позволяет избежать случайных ошибок и упрощает работу);
5. Состояние деревьев принимается бинарным (живое/мертвое). Любое дробное деление при ограниченности выборки приведет лишь излишней работе и недостоверным оценкам;

Таблица данных:
ele;num;d02;h02;l02;d08;d18;h18;l18
abies;1;19;NA;TRUE;20;21;NA;TRUE
picea;2;38;NA;TRUE;38;37;NA;FALSE
abies;3;12;NA;TRUE;12;13;NA;TRUE
picea;4;24;NA;TRUE;24;22;NA;FALSE
picea;5;47;NA;TRUE;46;42;NA;FALSE
pinsib;6;37;NA;TRUE;28;32;NA;TRUE
abies;7;11;NA;TRUE;12;13;NA;TRUE
picea;8;22;NA;TRUE;24;24;NA;FALSE
none;9;14;NA;FALSE;14;13;NA;FALSE
picea;10;31;27;TRUE;32;31;NA;FALSE
picea;11;19;NA;TRUE;18;20;NA;FALSE
picea;12;17;NA;TRUE;16;18;NA;FALSE
picea;13;17;NA;TRUE;16;16;NA;FALSE
betula;14;22;NA;TRUE;22;24;NA;TRUE
abies;15;14;NA;TRUE;14;15;NA;TRUE
abies;16;24;NA;TRUE;24;26;NA;TRUE
abies;17;15;16;TRUE;16;16;NA;TRUE
abies;18;18;NA;TRUE;18;17;NA;FALSE
picea;19;41;NA;TRUE;40;40;NA;FALSE
picea;20;36;NA;TRUE;36;35;NA;FALSE
pinsib;21;22;NA;FALSE;20;25;NA;FALSE
none;22;15;NA;TRUE;16;16;NA;TRUE
picea;23;9;NA;TRUE;8;9;NA;TRUE
none;24;21;NA;FALSE;20;NA;NA;TRUE
larix;25;67;NA;TRUE;68;66;NA;TRUE
picea;26;25;NA;TRUE;24;24;NA;FALSE
picea;27;48;NA;TRUE;48;49;NA;FALSE
picea;28;27;NA;TRUE;26;27;NA;FALSE
picea;29;42;NA;TRUE;42;41;30;FALSE
larix;30;56;NA;TRUE;54;56;NA;FALSE
picea;31;20;NA;TRUE;20;20;NA;FALSE
picea;32;37;NA;TRUE;36;36;NA;FALSE
larix;33;54;NA;TRUE;54;58;39;TRUE
larix;34;28;NA;TRUE;28;28;NA;TRUE
picea;35;49;NA;TRUE;48;44;NA;FALSE
picea;36;38;27;TRUE;38;39;NA;FALSE
picea;37;13;NA;TRUE;12;NA;NA;TRUE
pinsib;38;6;NA;TRUE;6;6;NA;FALSE
abies;39;14;NA;FALSE;14;NA;NA;TRUE
abies;40;15;NA;TRUE;14;NA;NA;TRUE
pinsib;41;40;26;TRUE;40;39;NA;FALSE
abies;42;13;NA;TRUE;14;16;NA;TRUE
picea;43;27;24;TRUE;26;28;NA;TRUE
abies;44;9;NA;TRUE;10;13;NA;TRUE
picea;45;28;NA;TRUE;28;27;NA;FALSE
picea;46;35;NA;TRUE;34;36;NA;FALSE
abies;47;29;NA;TRUE;20;23;23;TRUE
picea;48;44;NA;TRUE;44;44;NA;FALSE
betula;49;18;NA;TRUE;18;22;NA;TRUE
picea;50;12;NA;TRUE;12;12;NA;TRUE
betula;51;28;NA;TRUE;28;31;NA;TRUE
abies;52;16;NA;TRUE;16;20;NA;TRUE
picea;53;14;NA;TRUE;16;18;NA;TRUE
abies;54;17;NA;TRUE;18;20;NA;TRUE
betula;55;30;NA;TRUE;30;30;NA;TRUE
pinsib;56;39;NA;TRUE;40;40;NA;FALSE
betula;57;16;NA;TRUE;16;16;NA;TRUE
abies;58;20;NA;TRUE;20;23;NA;TRUE
abies;59;12;NA;TRUE;12;15;NA;TRUE
betula;60;26;NA;TRUE;24;NA;NA;TRUE
betula;61;30;NA;TRUE;30;29;NA;TRUE
picea;62;16;NA;TRUE;16;18;NA;TRUE
betula;63;26;NA;TRUE;28;24;NA;FALSE
picea;64;8;NA;TRUE;8;11;NA;TRUE
larix;65;70;NA;TRUE;72;70;NA;TRUE
betula;66;17;NA;TRUE;18;19;NA;TRUE
betula;67;13;NA;TRUE;12;13;NA;FALSE
abies;68;21;17;TRUE;22;25;26;TRUE
pinsib;69;12;NA;TRUE;12;13;16;TRUE
pinsib;70;42;24;TRUE;42;44;NA;FALSE
abies;71;10;NA;TRUE;12;13;13;TRUE
abies;72;17;NA;TRUE;18;20;19;TRUE
abies;73;14;NA;TRUE;14;16;19;TRUE
larix;74;42;29;TRUE;42;42;34;TRUE
larix;75;63;NA;TRUE;64;65;NA;TRUE
larix;76;60;NA;TRUE;62;58;37;TRUE
picea;77;29;25;TRUE;28;28;NA;FALSE
picea;78;35;NA;TRUE;38;36;NA;FALSE
abies;79;19;NA;TRUE;18;20;NA;TRUE
abies;80;10;NA;TRUE;10;12;NA;TRUE
picea;81;33;NA;TRUE;34;34;NA;FALSE
abies;82;10;NA;TRUE;10;12;NA;TRUE
abies;83;9;NA;TRUE;10;12;16;TRUE
larix;84;35;29;TRUE;36;37;NA;TRUE
abies;85;18;NA;TRUE;18;NA;NA;TRUE
picea;86;24;NA;FALSE;24;NA;NA;TRUE
abies;87;13;15;TRUE;14;14;12;TRUE
larix;88;42;NA;TRUE;40;41;33;TRUE
larix;89;60;NA;TRUE;62;60;32;TRUE
picea;90;18;NA;TRUE;18;19;NA;FALSE
larix;91;56;NA;TRUE;54;57;NA;TRUE
larix;92;60;NA;TRUE;60;58;35;TRUE
larix;93;22;NA;FALSE;22;19;NA;FALSE
larix;94;68;NA;TRUE;70;66;NA;TRUE
pinsib;95;21;20;TRUE;22;23;NA;TRUE
picea;96;29;NA;TRUE;28;29;NA;FALSE
larix;97;52;NA;TRUE;54;50;NA;TRUE
picea;98;31;NA;FALSE;30;32;NA;FALSE
abies;99;22;NA;TRUE;22;24;NA;TRUE
larix;100;62;NA;TRUE;64;58;NA;TRUE
larix;101;61;NA;TRUE;62;60;NA;TRUE
picea;102;50;NA;TRUE;48;48;NA;FALSE
picea;103;41;NA;TRUE;40;42;NA;FALSE
picea;104;38;NA;TRUE;38;36;NA;FALSE
picea;105;35;NA;TRUE;34;35;NA;FALSE
picea;106;19;NA;TRUE;20;20;NA;FALSE
abies;107;27;NA;TRUE;26;28;27;TRUE
abies;108;23;NA;TRUE;22;20;NA;FALSE
abies;109;15;NA;TRUE;16;17;NA;TRUE
abies;110;27;NA;TRUE;28;28;NA;TRUE
abies;111;14;NA;TRUE;16;17;NA;TRUE
abies;112;21;NA;TRUE;20;22;NA;TRUE
abies;113;25;NA;TRUE;26;28;NA;TRUE
abies;114;25;NA;TRUE;26;26;NA;TRUE
abies;115;24;NA;TRUE;24;26;NA;TRUE
abies;116;21;NA;FALSE;NA;NA;NA;TRUE
abies;117;21;NA;TRUE;20;23;NA;TRUE
abies;118;20;NA;TRUE;20;22;NA;TRUE
abies;119;17;NA;TRUE;18;19;NA;TRUE
picea;120;16;NA;TRUE;16;16;NA;TRUE
pinsib;121;14;NA;TRUE;14;16;NA;TRUE
abies;122;12;NA;TRUE;12;14;NA;TRUE
abies;123;13;NA;FALSE;12;14;NA;FALSE
pinsib;124;43;NA;TRUE;44;46;NA;TRUE
picea;125;26;NA;TRUE;28;28;NA;TRUE
pinsib;126;24;NA;TRUE;26;29;NA;TRUE
larix;127;21;NA;TRUE;22;21;NA;TRUE
abies;128;19;NA;TRUE;20;20;NA;TRUE
picea;129;19;NA;TRUE;20;21;NA;TRUE
picea;130;22;NA;FALSE;22;NA;NA;TRUE
abies;131;13;NA;TRUE;12;14;NA;TRUE
picea;132;20;NA;TRUE;22;24;NA;TRUE
picea;133;22;NA;FALSE;20;NA;NA;TRUE
picea;134;22;23;TRUE;22;25;NA;TRUE
pinsib;135;34;22;TRUE;34;36;NA;TRUE
picea;136;41;27;TRUE;42;42;NA;TRUE
abies;137;12;NA;TRUE;12;14;NA;TRUE
abies;138;11;NA;TRUE;12;12;18;TRUE
larix;139;42;NA;TRUE;44;47;NA;TRUE
picea;140;24;NA;TRUE;24;26;NA;TRUE
abies;141;20;NA;TRUE;20;21;NA;TRUE
larix;142;55;NA;TRUE;54;56;NA;TRUE
pinsib;143;28;NA;TRUE;26;23;NA;TRUE
abies;144;17;13;TRUE;18;19;NA;TRUE
pinsib;145;32;NA;TRUE;22;17;NA;TRUE
picea;146;23;22;TRUE;24;28;NA;TRUE
abies;147;26;21;TRUE;NA;NA;NA;TRUE
abies;148;15;NA;TRUE;16;19;NA;TRUE
abies;149;12;NA;TRUE;12;14;NA;TRUE
abies;150;27;NA;TRUE;26;28;NA;TRUE
abies;151;29;NA;TRUE;28;29;NA;FALSE
abies;152;13;NA;TRUE;14;16;NA;TRUE
betula;153;37;NA;TRUE;36;36;NA;FALSE
abies;154;18;NA;TRUE;18;21;NA;TRUE
abies;155;23;23;TRUE;22;24;NA;TRUE
pinsib;156;16;NA;TRUE;16;18;20;TRUE
pinsib;157;8;NA;TRUE;8;11;NA;TRUE
pinsib;158;34;23;TRUE;36;40;NA;TRUE
abies;159;26;NA;TRUE;26;27;23;TRUE
abies;160;23;NA;TRUE;24;25;27;TRUE
abies;161;16;NA;TRUE;18;20;22;TRUE
abies;162;13;NA;TRUE;14;NA;NA;TRUE
abies;163;20;NA;TRUE;22;24;NA;TRUE
abies;164;16;NA;TRUE;16;19;NA;TRUE
picea;165;36;NA;TRUE;36;36;NA;FALSE
picea;166;28;NA;TRUE;28;28;NA;FALSE
abies;167;21;NA;TRUE;22;24;22;TRUE
larix;168;52;NA;TRUE;54;54;37;TRUE
larix;169;66;NA;TRUE;66;70;NA;TRUE
picea;170;29;NA;TRUE;30;33;25;TRUE
picea;171;33;NA;TRUE;34;35;NA;TRUE
larix;172;27;NA;TRUE;26;29;33;TRUE
larix;173;31;29;TRUE;32;33;32;TRUE
abies;174;18;NA;FALSE;18;NA;NA;TRUE
betula;175;24;NA;TRUE;24;24;NA;FALSE
abies;176;10;NA;TRUE;10;10;NA;TRUE
abies;177;18;NA;TRUE;16;21;NA;TRUE
pinsib;178;48;NA;TRUE;48;48;NA;TRUE
picea;179;15;NA;TRUE;16;17;NA;TRUE
abies;180;12;NA;TRUE;12;15;19;TRUE
abies;181;19;NA;TRUE;18;NA;NA;TRUE
abies;182;11;NA;TRUE;12;14;NA;TRUE
abies;183;12;NA;TRUE;14;15;NA;TRUE
picea;184;52;NA;TRUE;52;54;NA;FALSE
pinsib;185;8;NA;TRUE;8;8;NA;TRUE
abies;186;11;NA;TRUE;12;13;NA;TRUE
abies;187;18;NA;TRUE;18;21;NA;TRUE
betula;188;19;NA;TRUE;20;22;NA;TRUE
abies;189;11;NA;TRUE;10;12;NA;TRUE
abies;190;12;NA;TRUE;12;13;NA;TRUE
abies;191;9;NA;TRUE;8;8;NA;FALSE
abies;192;21;NA;TRUE;22;22;NA;TRUE
pinsib;193;43;NA;TRUE;44;44;28;TRUE
abies;194;8;NA;TRUE;8;10;NA;TRUE
picea;195;23;NA;TRUE;24;24;23;TRUE
abies;196;9;NA;TRUE;8;9;NA;TRUE
abies;197;9;NA;TRUE;10;10;12;TRUE
abies;198;8;NA;TRUE;8;8;NA;TRUE
abies;199;19;NA;TRUE;18;20;NA;TRUE
abies;200;9;NA;TRUE;8;9;NA;TRUE
abies;201;7;NA;TRUE;6;NA;NA;TRUE
pinsib;202;48;NA;TRUE;48;48;NA;FALSE
abies;203;10;NA;TRUE;10;11;NA;TRUE
abies;204;9;NA;TRUE;8;9;NA;TRUE
abies;205;21;NA;TRUE;22;23;24;TRUE
abies;206;7;NA;TRUE;8;8;12;TRUE
abies;207;12;NA;TRUE;14;14;11;FALSE
picea;208;8;NA;FALSE;8;NA;NA;TRUE
abies;209;11;NA;TRUE;10;12;NA;TRUE
abies;210;16;NA;TRUE;16;16;20;TRUE
pinsib;211;32;NA;TRUE;34;36;NA;TRUE
pinsib;212;15;NA;TRUE;14;14;NA;TRUE
abies;213;17;NA;TRUE;18;20;NA;TRUE
pinsib;214;27;23;TRUE;26;29;NA;TRUE
pinsib;215;22;20;TRUE;22;24;28;TRUE
picea;216;45;NA;TRUE;46;44;NA;TRUE
abies;217;10;NA;TRUE;10;12;NA;TRUE
abies;218;21;NA;TRUE;22;23;NA;TRUE
abies;219;9;NA;TRUE;10;10;NA;TRUE
pinsib;220;14;NA;TRUE;14;14;NA;FALSE
abies;221;9;NA;TRUE;10;NA;NA;TRUE
abies;222;15;NA;TRUE;16;NA;NA;TRUE
picea;223;26;NA;FALSE;26;NA;NA;TRUE
abies;224;19;NA;TRUE;20;23;NA;TRUE
larix;225;40;29;TRUE;42;44;NA;TRUE
abies;226;13;NA;TRUE;14;18;NA;TRUE
picea;227;44;30;TRUE;46;46;NA;TRUE
abies;228;17;NA;TRUE;18;18;NA;TRUE
abies;229;14;NA;TRUE;14;14;NA;TRUE
abies;230;22;NA;TRUE;22;NA;NA;TRUE
abies;231;14;NA;TRUE;14;15;18;TRUE
abies;232;20;NA;TRUE;20;20;21;TRUE
abies;233;25;NA;TRUE;26;27;22;TRUE
larix;234;54;NA;TRUE;54;56;34;TRUE
betula;235;21;NA;TRUE;20;21;22;TRUE
pinsib;236;17;NA;TRUE;18;21;NA;TRUE
picea;237;23;NA;TRUE;24;26;NA;TRUE
larix;238;47;NA;TRUE;50;50;NA;TRUE
larix;239;15;NA;TRUE;16;17;NA;TRUE
larix;240;37;NA;TRUE;38;38;NA;TRUE
picea;241;11;NA;TRUE;12;12;NA;TRUE
picea;242;11;NA;TRUE;12;13;NA;TRUE
picea;243;25;NA;TRUE;26;28;NA;TRUE
picea;244;14;NA;TRUE;16;16;NA;TRUE
picea;245;16;NA;TRUE;16;19;NA;TRUE
picea;246;13;NA;TRUE;12;13;NA;TRUE
betula;247;25;NA;TRUE;24;27;NA;TRUE
abies;248;20;NA;TRUE;20;23;NA;TRUE
larix;249;45;29;TRUE;44;45;NA;TRUE
larix;250;42;30;TRUE;42;43;NA;TRUE
abies;251;21;NA;TRUE;20;22;NA;TRUE
pinsib;252;33;NA;TRUE;34;38;NA;TRUE
betula;253;21;NA;TRUE;20;20;NA;FALSE
betula;254;22;NA;TRUE;22;25;NA;TRUE
betula;255;23;NA;TRUE;22;19;NA;FALSE
betula;256;11;NA;TRUE;10;11;NA;TRUE
betula;257;21;NA;TRUE;18;NA;NA;TRUE
pinsib;258;8;NA;FALSE;8;8;NA;FALSE
picea;259;23;NA;TRUE;24;25;NA;TRUE
betula;260;22;NA;TRUE;22;23;NA;TRUE
picea;261;25;NA;TRUE;26;27;NA;TRUE
picea;262;15;NA;TRUE;14;14;NA;FALSE
abies;263;10;NA;TRUE;10;12;NA;TRUE
picea;264;19;NA;TRUE;18;20;NA;TRUE
picea;265;21;NA;TRUE;22;24;NA;TRUE
picea;266;15;NA;TRUE;16;16;NA;TRUE
larix;267;49;NA;TRUE;50;52;NA;TRUE
picea;268;8;NA;TRUE;8;8;NA;TRUE
picea;269;23;NA;TRUE;24;24;NA;TRUE
picea;270;11;NA;TRUE;10;12;NA;TRUE
abies;271;28;NA;TRUE;28;28;NA;FALSE
abies;272;16;NA;TRUE;16;18;NA;TRUE
pinsib;273;52;NA;TRUE;34;54;NA;TRUE
picea;274;39;NA;TRUE;38;40;NA;TRUE
picea;275;30;NA;TRUE;30;30;NA;TRUE
abies;276;11;NA;TRUE;12;12;NA;TRUE
picea;277;27;NA;TRUE;26;28;NA;TRUE
picea;278;NA;NA;TRUE;24;25;NA;TRUE
pinsib;279;23;NA;TRUE;30;32;NA;TRUE
larix;280;29;NA;TRUE;42;43;NA;TRUE
pinsib;281;40;24;TRUE;44;45;NA;TRUE
pinsib;282;43;15;TRUE;14;16;NA;TRUE
pinsib;283;15;NA;TRUE;52;52;NA;FALSE
pinsib;284;50;NA;TRUE;60;57;NA;FALSE
pinsib;285;59;NA;TRUE;34;33;NA;FALSE
abies;286;36;NA;FALSE;16;NA;NA;TRUE
abies;287;16;21;TRUE;20;22;NA;TRUE
abies;288;20;NA;TRUE;12;13;NA;TRUE
picea;289;12;29;TRUE;44;42;NA;TRUE
pinsib;290;42;NA;TRUE;26;29;NA;TRUE
pinsib;291;26;NA;TRUE;18;17;NA;TRUE
abies;292;16;NA;TRUE;10;12;NA;TRUE
pinsib;293;10;NA;TRUE;10;10;NA;TRUE
picea;294;11;NA;TRUE;42;42;NA;TRUE
abies;295;41;NA;TRUE;12;NA;NA;TRUE
abies;296;12;24;TRUE;NA;NA;NA;TRUE
abies;297;23;NA;TRUE;14;16;NA;TRUE
abies;298;13;NA;TRUE;12;15;NA;TRUE
abies;299;12;21;TRUE;24;24;NA;TRUE
pinsib;300;23;NA;TRUE;42;40;NA;TRUE
abies;301;41;NA;TRUE;16;12;NA;TRUE
abies;302;11;NA;TRUE;16;16;NA;TRUE
abies;303;15;NA;TRUE;16;16;NA;TRUE
abies;304;15;NA;FALSE;10;NA;NA;TRUE
abies;305;11;NA;TRUE;18;19;NA;TRUE
abies;306;18;NA;TRUE;18;20;NA;TRUE
abies;307;17;NA;FALSE;8;NA;NA;TRUE
betula;308;NA;NA;TRUE;20;22;NA;TRUE
abies;267А;20;NA;FALSE;NA;16;NA;TRUE
larix;267Б;NA;NA;FALSE;NA;46;NA;TRUE
picea;б/н;NA;NA;TRUE;NA;10;NA;TRUE
none;б/н;NA;NA;TRUE;NA;9;7;TRUE
picea;б/н;NA;NA;TRUE;NA;6;NA;TRUE

В таком виде собранные данные пригодны для обработки хоть вручную, хоть в Экселе, SPSS или любом отличном от брэйнфака языке. Мы воспользуемся R.

Подключение пакетов и загрузка данных

#Устанавливаем необходимые пакеты
install.packages("moments") #Коэффициенты эксцесса и асимметрии
install.packages("nortest") #Тесты на нормальность
#===================================================================
#Подключаем необходимые библиотеки
library(moments)
library(nortest)
#===================================================================
#Загружаем данные
alldata <- read.table(file="alldata", header=TRUE, sep=";")
spec <- split(alldata,alldata$ele)
#===================================================================

Перед тем, как вникать в статистику, посмотрим на размеры выборки. При первом перечете описано 307 деревьев (на самом деле 308, но у елки №278 не указан диаметр, поэтому будем считать ее незафиксированной). При последующих перечетах добавилось еще шесть новых деревьев (включая ель №278). Рассчитаем, как распределяются 313 деревьев по породам с учетом количества усохших и выпавших деревьев:

Пример количественной оценки пихт

abies.all <- spec$abies
length(abies.all$ele) #Всего записей, которые относятся к пихтам (127)
sum(!is.na(abies.all$d02)) #Количество пихт в перечете 2002 года (127)
sum(!is.na(abies.all$d08)) #Количество пихт в перечете 2008 года (123)
sum(!is.na(abies.all$d18)) #Количество пихт в перечете 2018 года (110)
#===================================================================
# Подсчитываем количество пихт в 2002 году
abies.all.live02 <- split(abies.all,abies.all$l02)
length(abies.all.live02$'FALSE'$ele)# Количество измеренных мертвых (FALSE) пихт в 2002 году (8)
length(abies.all.live02$'TRUE'$ele)# Количество измеренных живых (TRUE) пихт в 2002 году (119)
#===================================================================
# Подсчитываем количество пихт в 2018 году
abies.all.live18 <- split(abies.all,abies.all$l18)
length(abies.all.live18$'FALSE'$ele) # Количество измеренных мертвых (FALSE) пихт в 2018 году (7)
sum(!is.na(abies.all.live18$'TRUE'$d18))# Количество измеренных живых (TRUE) пихт в 2018 году (103)
#===================================================================

В перечете 2008 года отсутствует информация о разделении деревьев на живые и усохшие, поэтому данные этого года представлены одним числом — общим количеством учтенных стволов. Данные 2002 и 2018 года представлены операцией вычитания, в которой уменьшаемое — число всех деревьев породы, вычитаемое — число сухих деревьев, разность — число живых деревьев.

Количество учтенных деревьев (размеры выборок)

Порода2002 год2008 год2018 годСохранность,%
Ель (picea)82-6=768379-36=4356.6
Береза (betula)21-0=212220-6=1466.7
Кедр (pinsib)40-2=384040-11=2976.3
Пихта (abies)127-8=119123110-7=10386.6
Лиственница (larix)34-2=323435-2=33103.1
Неопределенная порода (none)3-2=133-1=2200


За шестнадцать лет в насаждении активно выпадает елка, кедр и береза (тут нельзя забывать об эффекте низкой базы, см. 200% сохранности неопределенных пород). Любой нормальный лесовод на этом бы завершил свои изыскания, но мы продолжим наши статистические фрикции.

Для того, что-бы оценить качество исследуемых данных, сравним между собой их наиболее значимые части — подеревные перечеты. Логично предположить, что при неизменных данных график зависимости значений диаметров текущего перечета от значений диаметров прошлого перечета будет представлять собой идеальную прямую которая проходит под углом сорок пять градусов. В реальности всегда есть отклонения от такой прямой. Даже при неизмеряемой величине радиального прироста, диаметры могут как увеличиваться (за счет неравномерности окружности ствола, ошибок округления при измерении), так и уменьшаться (за счет отслаивания коры, указанных выше или других причин). Однако эти изменения при качественно выполненной работе всегда невелики. При одностороннем замере диаметров встречаются отклонения до пяти сантиметров с единичными отклонениями до 10 см (при измерении стволов неправильной формы).

Я не могу объяснить изменение диаметра стволов на двадцать пять сантиметров за шесть лет иными причинами, кроме разъебайства исследователей. Очевидно, что это грубые ошибки наблюдения, поскольку в перечетах 2008-2018 года таких выбросов не наблюдается (за исключением одного кедра). При финальной обработке данных, такие значения должны быть удалены из выборки, однако, в данный момент делать это некорректно. В ситуации, когда два наблюдения противоречат друг другу (стабильность и разброс измеренных величин) даже в самом примитивном подходе необходимо третье наблюдение. Тем более, что выбросы наблюдаются преимущественно в измерениях кедров и пихт, а для берез, лиственниц и елей нехарактерны.

Тем не менее, следует помнить, что все нижеприведенные рассуждения основаны на анализе исходных странных данных, поэтому всякая интерпретация результата должна быть подвержена великому сомнению.

Прежде чем перейти к описательной статистике, необходимо протестировать данные на нормальность. Без этого мы не имеем права делать сложный анализ. Да что анализ, даже сравнивать между собой средние значения без теста нормальности недопустимо. Существует около двух десятков популярных тестов на нормальность — заебешься тестировать, поэтому мы ограничимся лишь наиболее подходящими тестами по совету А.И. Кобзаря («Прикладная математическая статистика». — М.: Физматлит, 2006. — 816 с.). Для этого оценим, насколько распределения отличаются от гауссовской палатки с помощью коэффициентов ассиметрии и эксцесса:

Пример расчета ассиметрии и эксцесса

skewness(abies.all$d02, na.rm = TRUE) # Ассиметрия распределения диаметров пихт в 2002 году (1.144345)
kurtosis(abies.all$d02, na.rm = TRUE) # Эксцесс распределения диаметров пихт в 2002 году (5.02645)
#===================================================================

В числителе указана ассиметрия, в знаменателе эксцесс. Значения коэффициентов, рассчитанные для всех деревьев породы (живые и сухие) указаны вне скобок. В скобках даны значения коэффициентов только для живых деревьев породы.

Порода2002 год

асс/экс

2008 год

асс/экс

2018 год

асс/экс

Предпочтительные тесты

на нормальность

Ель (picea)0.418 (0.398)/2.298 (2.173)0.311/2.2060.173 (0.436)/2.237 (2.451)Критерий Шапиро-Уилка, Критерий Дэвида-Хартли-Пирсона, Критерий Андерсона-Дарлинга
Береза (betula)0.296 (0.296)/3.263 (3.263)0.240/3.1940.078 (-0.494)/3.032 (2.958)Критерий Дарбина, Критерий Шапиро-Уилка, Критерий хи-квадрат
Кедр (pinsib)0.139 (0.083)/1.964 (1.961)0.245/2.1170.106 (0.250)/1.869 (1.937)Критерий Филлибена, Критерий Шапиро-Уилка, Критерий Мартинса-Иглевича
Пихта (abies)1.144 (1.103)/5.026 (4.985)0.329/2.3160.190 (0.154)/2.079 (2.019)Критерий Шапиро-Уилка, Критерий Дэвида-Хартли-Пирсона, Критерий Андерсона-Дарлинга
Лиственница (larix)-0.43 (-0.475)/2.189 (2.347)-0.419/2.325-0.58 (-0.53)/2.610 (2.684)Критерий Шапиро-Уилка, Критерий Дэвида-Хартли-Пирсона, Критерий Андерсона-Дарлинга


В качестве наиболее универсальных критериев нормальности наших данных используем критерии Шапиро-Уилка и Андерсона-Дарлинга. Можно было бы ограничиться лишь Шапиро-Уилка, но этот тест плохо работает на больших выборках. Действующий ГОСТ Р ИСО 5479-2002 не рассматривает применение критерия Шапиро-Уилка для выборок свыше пятидесяти наблюдений, что создает препятствия для оценки нормальности распределения диаметров елок и пихт.

Полученные значения асимметрии и эксцесса сами по себе отражают динамику развития древостоя (преобладание крупных или мелких деревьев, изменение количества средних по диаметру деревьев). Для наглядности, представим ядерную плотность этих распределений на фоне доверительной полосы соответствующего нормального распределения. В верхнем ряду изображений показаны распределения для всех деревьев породы, живых и усохших (три маленькие картинки), в нижнем только для живых деревьев (две большие картинки).

Построение графиков плотности распределения

sm.density(picea.all.live02$'TRUE'$d02, model = "Normal", xlab="Диаметр ствола ели, см", ylab="Плотность распределения")
dev.print(png, filename="RGraph.png", width=7, height=7, pointsize=12, units="in", res=200)
#===================================================================


Самые интересные процессы наблюдаются у пихты. В 2002 году в древостое преобладали деревья диаметром 10-25 см с ассиметричным распределением. Спустя шестнадцать лет ассиметрия уменьшилась в семь раз. В настоящее время элемент леса дифференцируется на две группы: деревья с преобладающим диаметром 10-15 см и деревья диаметром 20-25 см. Предпосылки к бимодальному распределению наблюдались еще в перечете 2002 года (еще раз указываю на странность тех данных), однако лишь в перечете 2018 года бимодальность проявляется явно. Это может быть связано с изреживанием элемента: часть пихт (левый пик распределения) достигла предельных возможностей развития. Эти деревья угнетаются, замедляются в росте и постепенно будут выпадать. Напротив, правая часть распределения представлена наиболее перспективными и жизнеспособными особями. Со временем это должно привести к разделению пихты на два элемента леса: угнетенные деревья 4-го и 5-го класса Крафта и нормально распределенный второй ярус древостоя.

В еловом элементе за время наблюдений выпала большая часть деревьев диаметром 30-40 см и значительная часть тонких деревьев менее 20 см. Это привело к увеличению преобладающего диаметра (мода распределения) примерно на пять сантиметров. В отличие от пихты, ель не проявляет бимодального распределения, что вероятнее всего свидетельствует о неспособности занимать в данных условиях доминирующее положение. Текущая динамика позволяет предположить, что меньшая часть деревьев из правой части распределения сохранит свое положение во втором ярусе, в то время как основная часть перейдет в низкие классы Крафта. В конечном итоге, ель будет представлять собой разнородную примесь в разных ярусах

Распределение берез по диаметру внешне напоминает нормальное распределение и за время наблюдений сохранило свою форму, за исключением смещения коэффициента ассиметрии в область отрицательных значений (усыхание деревьев с диаметром ствола менее 20 см). Впрочем, берез на пробе к 2018 году осталось лишь полтора десятка (меньше половины процента), поэтому информативность данной выборки переоценивать не стоит.

Кедр за шестнадцать лет сохранил суббимодальное распределение по диаметрам, однако его ассиметрия утроилась за счет выпадения деревьев толще 20 см. К настоящему времени ярко выделяется преобладающая мода в диапазоне 15-25 см. Вероятнее всего со временем бимодальность и ассиметрия в распределении будет расти, количество деревьев существенно снизится: отдельные деревья займут промежуточный ярус между лиственницей и пихтой, большая же часть кедров останется угнетенной во втором ярусе.

Распределения еловых, кедровых и, частично пихтовых стволов прямо не соответствуют кривой Шарлье, однако имеют сходство с распределением в насаждениях, где длительное время производят выборочные рубки, направленные на уборку отстающих в росте деревьев (Н.П. Анучин, 1982). В отличии от них, у лиственницы распределение с изначально отрицательной ассиметрий за время наблюдений еще больше сместилось в правую область. Равномерное снижение количества деревьев при уменьшении диаметра сменилось небольшим прогибом в диапазоне 20-40 см, что компенсировало выпадение деревьев толще 60 см.

При проверке распределения диаметров на нормальность воспользуемся p-значением 0.01. Классическое p=0.05, несмотря на его популярность не выдерживает критики, особенно в биологических исследованиях, где выборки представлены небольшим числом наблюдений (да, истинная причина в обосновании дальнейших параметрических методов, но я согласен с теми, кто даже 99% точность считает недопустимо низкой).

Проверка на нормальность диаметров живых пихт в 2002 году

shapiro.test(abies.all.live02$'TRUE'$d02) # тест Шапиро-Уилка
ad.test(abies.all.live02$'TRUE'$d02) # тест Андерсона-Дарлинга

В таблице указаны результаты теста Шапиро-Уилка (W) и Андерсона-Дарлинга (A) с вероятностями принятия нуль-гипотезы. В скобках указаны результаты тестов для живых деревьев, в остальных случаях для всех учтенных на пробе деревьев определенной породы.

Порода2002 год2008 год2018 год
Ель (picea)W = 0.963, p-value = 0.018 (W = 0.959, p-value = 0.015);A = 0.801, p-value = 0.036 (A = 0.867, p-value = 0.025);W = 0.963, p-value = 0.018;A = 0.903, p-value = 0.020;W = 0.980, p-value = 0.239 (W = 0.952, p-value = 0.071);A = 0.494, p-value = 0.210 (A = 0.630, p-value = 0.094);
Береза (betula)W = 0.980, p-value = 0.925 (W = 0.980, p-value = 0.925);A = 0.218, p-value = 0.815 (A = 0.218, p-value = 0.815);W = 0.969, p-value = 0.681;
A = 0.381, p-value = 0.370;
W = 0.980, p-value = 0.936 (W = 0.958, p-value = 0.686);A = 0.249, p-value = 0.712 (A = 0.266, p-value = 0.633);
Кедр (pinsib)W = 0.961, p-value = 0.186 (W = 0.964, p-value = 0.263);A = 0.480, p-value = 0.222 (A = 0.440, p-value = 0.278);W = 0.963, p-value = 0.207;
A = 0.461, p-value = 0.247;
W = 0.960, p-value = 0.161 (W = 0.957, p-value = 0.274);A = 0.488, p-value = 0.211 (A = 0.420, p-value = 0.305);
Пихта (abies)W = 0.922, p-value = 1.653e-06 (W = 0.923, p-value = 3.764e-06);A = 0.801, p-value = 0.036 (A = 1.679, p-value = 0.0002);W = 0.962, p-value = 0.001;
A = 0.903, p-value = 0.020;
W = 0.966, p-value = 0.007 (W = 0.965, p-value = 0.007);A = 0.494, p-value = 0.210 (A = 1.117, p-value = 0.006);
Лиственница (larix)W = 0.956, p-value = 0.184 (W = 0.959, p-value = 0.236);A = 0.476, p-value = 0.224 (A = 0.437, p-value = 0.280);W = 0.958, p-value = 0.207;
A = 0.488, p-value = 0.209;
W = 0.950, p-value = 0.111 (W = 0.961, p-value = 0.281);A = 0.544, p-value = 0.151 (A = 0.387, p-value = 0.369);


Диаметры елей, берез, кедров и лиственниц распределены нормально во всех выборках, исходя из обоих тестов. При последнем наблюдении p-значения елок существенно увеличены, а критерий Андерсона-Дарлинга значительно снижен, что косвенно говорит о нормализации элемента леса.

Сложнее обстоит дело с пихтами. В 2002 году их распределение существенно отличалось от нормального по тесту Шапиро-Уилка и соответствовало нормальному по тесту Андерсона-Дарлинга. Данная выборка превышает сотню наблюдений, поэтому тест Шапиро-Уилка мы можем проигнорировать, но даже в этом случае нормальность распределения наблюдается лишь для всей совокупности деревьев (живых и мертвых). При наблюдениях 2008 и 2018 года нормальность всей совокупности подтверждается обоими тестами, причем, как в случае с елями, вероятность случайного распределения существенно возрастает к настоящему времени. При этом выборка измеренных диаметров живых деревьев остается далекой от нормального распределения.

Полученные результаты дают нам основание сравнивать между собой средние значения диаметров пород в разные годы наблюдения, за исключением живых деревьев пихты. В последнем случае мы вынуждены использовать для сравнения медианные значения и не можем достоверными параметрическими методами выявить изменение величины радиального прироста.

Таблицы описательных статистик распределения диаметров

Вычисление описательных статистик

mean(abies.all.live02$'TRUE'$d02, na.rm = TRUE) # Арифметическая средняя
median(abies.all.live02$'TRUE'$d02, na.rm = TRUE) # Медиана
sd(abies.all.live02$'TRUE'$d02, na.rm = TRUE)# Стандартное отклонение
var(abies.all.live02$'TRUE'$d02, na.rm = TRUE) # Дисперсия
min(abies.all.live02$'TRUE'$d02, na.rm = TRUE) # Минимальное значение
max(abies.all.live02$'TRUE'$d02, na.rm = TRUE) # Максимальное значение
sd(abies.all.live02$'TRUE'$d02, na.rm = TRUE)/sqrt(sum(!is.na(abies.all.live02$'TRUE'$d02))) # Стандартная ошибка
IQR(abies.all.live02$'TRUE'$d02, na.rm = TRUE) # Интерквартильный
размах

Описательные статистики для ели (в скобках данные для живых деревьев, за скобками данные для всей совокупности деревьев)

Характеристика выбоки2002 г.2008 г.2018 г.
Арифметическая средняя26.000 (26.303)26.81927.519 (23.512)
Стандартная ошибка1.257 (1.332)1.2411.254 (1.604)
Медиана24.0 (24.5)24.027.0 (24.0)
Стандартное отклонение11.384 (11.608)11.30511.148 (10.518)
Дисперсия129.605 (134.747)127.808124.279 (110.637)
Минимальное значение8 (8)86 (6)
Максимальное значение52 (52)5254 (46)
Интерквартильный размах18.0 (18.5)18.017.0 (12.0)


Описательные статистики для лиственницы (в скобках данные для живых деревьев, за скобками данные для всей совокупности деревьев)

Характеристика выбоки2002 г.2008 г.2018 г.
Арифметическая средняя47.353 (48.121)48.35348.371 (49.030)
Стандартная ошибка1.648 (2.517)1.6311.594 (2.361)
Медиана50.5 (52.0)52.050.0 (50.0)
Стандартное отклонение14.926 (14.458)14.85714.167 (13.566)
Дисперсия222.781 (209.047)220.720200.711 (184.030)
Минимальное значение15 (15)1617 (17)
Максимальное значение70 (70)7270 (70)
Интерквартильный размах22.25 (20.0)21.016.5 (16.0)


Описательные статистики для кедра (в скобках данные для живых деревьев, за скобками данные для всей совокупности деревьев)

Характеристика выбоки2002 г.2008 г.2018 г.
Арифметическая средняя28.750 (29.474)27.95029.375 (27.897)
Стандартная ошибка2.255 (2.300)2.2182.272 (2.399)
Медиана27.5 (30.0)26.029.0 (29.0)
Стандартное отклонение14.264 (14.180)14.02914.368 (12.921)
Дисперсия203.474 (201.067)196.818206.446 (166.953)
Минимальное значение6 (6)66 (8)
Максимальное значение59 (59)6057 (54)
Интерквартильный размах24.75 (25.25)24.523.25 (21.0)


Описательные статистики для березы (в скобках данные для живых деревьев, за скобками данные для всей совокупности деревьев)

Характеристика выбоки2002 г.2008 г.2018 г.
Арифметическая средняя22.476 (22.476)22.022.9 (23.0)
Стандартная ошибка1.310 (1.310)1.2761.339 (1.456)
Медиана22.0 (22.0)22.022.5 (22.5)
Стандартное отклонение6.005 (6.005)5.9845.990 (5.449)
Дисперсия36.062 (36.062)35.81035.884 (29.692)
Минимальное значение11 (11)1011 (11)
Максимальное значение37 (37)3636 (31)
Интерквартильный размах7.0 (7.00)5.55.75 (5.25)


Описательные статистики для пихты (в скобках данные для живых деревьев, за скобками данные для всей совокупности деревьев)

Характеристика выбоки2002 г.2008 г.2018 г.
Арифметическая средняя16.70116.08117.745
Стандартная ошибка0.5700.4770.521
Медиана16 (16)1617 (17)
Стандартное отклонение6.4255.2945.461
Дисперсия41.27528.02629.825
Минимальное значение7 (7)68 (8)
Максимальное значение41 (41)2829 (28)
Интерквартильный размах8 (8)89 (9)


Средние значения диаметров всех деревьев (живых и мертвых) за время наблюдения возросли у ели, лиственницы, кедра (кроме 2008 г.), березы (кроме 2008 г.) и снизились у пихты. При этом средние диаметры живых елей и кедров снизились. Однако, ни одно из этих изменений нельзя назвать статистически достоверным. В этой связи, приходится признать, что значимых изменений радиального прироста за шестнадцать лет зафиксировать не удалось.

Распределение диаметров пород выравнивается (подтверждается снижением интерквартильного размаха и дисперсии на 10-30 процентов) вокруг средних значений. Максимальные значения диаметров снижаются, минимальные возрастают. Одновременное выпадение наиболее крупных и мелких деревьев свидетельствует об увеличении однородности насаждения и его несформированности. Однако, окончательный вывод о динамике развития древостоя по существующим данным делать недопустимо.

Еще меньшей информативностью обладают данные по высотам. Измерение высот — чрезвычайно трудоемкий процесс с большой вероятностью субъективных ошибок. Над его улучшением трудились Ленхорд, Ланг, Лайер, Таката, Видеманн, Филипп, Гогенадль, Вейзе, Кренн, Лорей, Митерлих, Жан Парде, Продан и другие выдающиеся исследователи, но результат высотных замеров как был, так и остается хуетой в подавляющем большинстве исследований. Это связано со сложностью распознавания вершины дерева (и самим понятием «вершины»), микрорельефом, трудностью выставления точного базисного расстояния, несоответствием отбираемых деревьев распределению по диаметру и ряду других причин.

Несоответствие диаметров 2002 и 2008-2018 годов заранее вызывает подозрение в плохом качестве проведенной измерительной работы при закладке пробы. Это подтверждают и графики распределения высот по диаметрам. Конечно же, за шестнадцать лет могли произойти видимые изменения, но едва ли они могут иметь столь радикальный характер. Вероятнее предположить, что наблюдаемые изменения являются следствием погрешности и распиздяйства.

Это предположение подтверждает и описательная статистика. Поскольку число модельных деревьев каждой породы составляет максимум полтора-два десятка наблюдений, для оценки нормальности распределения достаточно применить только критерий Шапиро-Уилка. За исключением лиственницы в перечете 2018 года, все остальные выборки распределены нормально, но их средние значения не выявляют достоверных различий.

Таблицы описательных статистик распределения высот

Статистики распределения значений высоты у кедра

Характеристика выборки2002 г.2018 г.
Тест Шапиро-УилкаW = 0.905, p-value = 0.281W = 0.849, p-value = 0.224
Среднее21.923.0
Стандартная ошибка1.0733
Медиана2324

Статистики распределения значений высоты у лиственницы

Характеристика выборки2002 г.2018 г.
Тест Шапиро-УилкаW = 0.496, p-value = 2.073e-05W = 0.908, p-value = 0.266
Среднее29.234.6
Стандартная ошибка0.1670.748
Медиана29.034.0

Статистики распределения значений высоты у ели

Характеристика выборки2002 г.2018 г.
Тест Шапиро-УилкаW = 0.954, p-value = 0.737W = 0.942, p-value = 0.537
Среднее26.026.0
Стандартная ошибка0.8982.082
Медиана27.025.0

Статистики распределения значений высоты у пихты

Характеристика выборки2002 г.2018 г.
Тест Шапиро-УилкаW = 0.92382, p-value = 0.4248W = 0.93569, p-value = 0.1612
Среднее19.019.4
Стандартная ошибка1.2801.062
Медиана21.019.5

Статистики распределения значений высоты у березы

Характеристика выборки2002 г.2018 г.
Среднее22.0


Таким образом, за период наблюдений 2002-20018 г. на пробной площади не отмечено достоверных изменений средних диаметров, высот, а значит и запасов у элементов леса. Запас продолжает быть необычайно высоким: принимая значение видовых чисел за 0.5, он составляет 452.5 кубометра живой древесины на гектар (лиственница — 270 куб.м, ель — 60 куб.м, кедр — 50 куб.м, пихта — 57.5 куб.м, береза — 15 куб.м). Это значение почти идентично запасу, рассчитанному в 2002 году (466 куб.м), хотя замечу, что в статье З.Я. и В.З. Нагимовых сумма запасов у пород (504 куб.м в таблице и 524 куб. м в тексте статьи) превышает запас на пробной площади: существенно разнятся по запасам ель (в статье 148 куб. м) и береза (в статье 15 куб. м). Запас, определенный в 2008 году идентичен текущему запасу.

Анализ изменения распределений по диаметру елей, кедров и в меньшей степени пихт указывает на процессы изреживания наиболее отстающих в росте деревьев. У пихты и кедра наблюдается небольшая бимодальность распределения в отличии от ели, что косвенно свидетельствует о меньшем потенциале елового элемента в становлении древостоя. Отмечаются слабые процессы нормализации в распределении диаметров у пород, что говорит о повышении его однородности и текущем активном процессе формирования древостоя (хотя это видно визуально и без всяких вычислений).

При рассмотрении выводов, следует помнить про вероятностный характер любых интерпретаций. Во многом это следствие необычных данных 2002 года (вероятно, включающих в себя значительные ошибки), но основная причина в том, что делать однозначные заключения о динамике развития растительного сообщества на основании трех наблюдений может только некомпетентный мудак.

Контурная карта растительности

Рассказ о геоботанической контурной карте с недавней конференции «Открытые геотехнологии«. Выступления других спикеров доступны на канале конференции.

К слову об источниках русловой динамики степных рек с малым течением

В наш просвещенный век каждый знает о таком явлении, как меандрирование рек. Чем сильнее изгибается русло, тем выше разность скоростей течения воды у берегов. По внешнему радиусу водный поток движется быстрее, соответственно там быстрее проистекают процессы эрозии еще более изгибая направление русла и повышая разность скоростей водного потока. Это, если хотите, прекрасный пример системы с положительной обратной связью.

Принято считать, что самой наглядной демонстрацией меандр являются космические снимки. Например, как вот этот мапбоксовский снимок реки Аксай:
aksaj

В действительности, ничего не может продемонстрировать суть меандрирования реки лучше, чем сплав по ней в солнечную погоду. Вот солнце слева от вас, а нет уже справа, нет, опять слева, нет сзади, да нет же, справа, хотя постойте, вот прямо по курсу светит… Сплавляясь весной по этой реке, я не мог не обратить свое внимание на особенности русловой динамики и даже имею кое-что сообщить вам по этому поводу.

Гидрологическая наука в лице А. Ю. Сидорчука (статья «Главные формы речных русел: меандры и разветвления«) утверждает, что: «Первоначальный изгиб русла появляется за счет гидродинамической неустойчивости прямолинейного потока». Утверждение настолько тривиальное, что создается ощущение, будто автор пытается уйти от вопроса первопричины образования изгиба водотока. В чем механика процесса зарождения изгиба, господа? Не развития, подчеркиваю, а именно изгиба? Если принять за истину, что в основе всего стоит «гидродинамическая неустойчивость», то следует признать, что такой неустойчивости присуще странное свойство сохранения ассиметричной структуры на время, достаточное, для появления разности скоростей течения, а это согласитесь, едва ли возможно.

Конечно-же, причины зарождения изгиба русла кроются не в самом водном потоке, но в связи водного потока и его русла. Неоднородности русла влияют на неоднородность потока и наоборот — это неразрывное целое. И с этой точки зрения прямолинейное русло есть система, напряженность которой прямо пропорциональна длине русла. В какой-то момент напряженность достигает максимума и линейная динамика сменяется хаотической в лучших традициях теории катастроф Рене Тома. В это сингулярное время, поводом к началу изгиба реки может быть все что угодно.

Но, хватит теории. Сплавляясь по Аксаю, я с интересом отметил, что во многих случаях, причиной появления разности скоростей водного потока у противоположных берегов являются упавшие стволы деревьев:
img_3042

Растущие по берегам деревья (большей частью тополя) падают неизменно в воду, поскольку крона их неравномерно развита и значительно более массивна с открытой стороны, обращенной к воде. Упав, дерево может достаточно долго оставаться прикрепленным корнями к субстрату, при этом замедляя течение и аккумулируя перед собой плывущие ветви и водоросли.
img_3039

Накопленный, благодаря колебаниям уровня воды ил, вкупе с разлагающимся субстратом древесины создает достаточные условия для произрастания трав, а в редких случаях даже кустарников:
img_3044

Но что еще интереснее — на реках с малым течением, коим является и Мертвый Аксай в его верховьях, основной причиной падения деревьев в воду становится не подмывание почвы, хотя таковое тоже имеет место, а банальный ветровал. В связи с этим, наиболее сильная дифференциация скорости водного потока происходит на участках реки с узкими береговыми полосами леса или множеством отдельно стоящих деревьев. Большие лесные массивы вдоль берегов служат достаточным барьером против ветра — плыть по этим участкам почти не составляет труда: топляков и коряг весьма немного. Участки же с редкостойными насаждениями по берегам исключительно труднопроходимы для лодки и порой представляют серьезную опасность для экспедитора.

Это наблюдение веско показывает, что зная инициатор какого-либо естественного процесса и руководствуясь разумным представлением о механике природных явлений мы с успехом можем решать исключительно практические проблемы, к коим несомненно относится и прокладка экспедиционных маршрутов.

Картографическая парафилия

Картографическая парафилия

В 2009 году мы ехали в экспедицию по Мурманской области с неудобным рулоном семьсот двадцатой баннерной ткани, на которой была отпечатана карта растительности восточной части Лапландского заповедника. Карта эта направлялась в подарок администрации заповедника, она беспрерывно падала и укатывалась по вагону, мешая спокойно пить пиво в плацкарте. К великому счастью мы избавились от нее сразу по прибытию в Мончегорск. Если я правильно понимаю суть российских государственных организаций — эта карта до сих пор хранится в администрации заповедника. В свернутом виде, конечно-же.

Над изготовлением этой карты мы трудились около месяца. Она впитала в себя всю звучащую фоном дискографию «Сектора Газа», сборник сочинений Альфреда Шнитке и песню Александра Харчикова «Настоящий коммунист перед Родиною чист».

Но самое главное, карта сделана в фотошопе. От первого до последнего пикселя. Не задавайте глупого вопроса «зачем?». Каждый человек имеет в жизни право на легкую профессиональную девиацию. Зато получившийся результат настолько чудовищен, что вполне может сойти за новомодное авторское решение.

Я хранил в себе память об этом позоре долгих восемь лет. И хранил бы еще столько-же если-бы не нашел старый диск с, казалось, навсегда утерянными файлами. Так что держитесь, еще не такое будет.

Рубкология

Весь нынешний август я шароебился по разным кустам занимаясь оценкой успешности лесовозобновления на сплошных вырубках юго-запада Ленинградской области. Суть работы сводилась к следующему: я вылезал из теплой машины под бесконечный дождь, цеплял к рюкзаку на манер навесного оборудования трактора обычную штыковую лопату, в «ливчик» комбинезона засовывал планшетку с бланками, сжимал посильнее рукоять здоровенного тесака для рубки медвежьих бошек и в позе супермена из армии Батьки Махно погружался в дремучий кустарник, где писал разную технологическую ебанину и вонзал в раскисшую землю сотни палок с красными лентами.
102_4624

К большому сожалению, заказчик этого безумия находился в стадии перманентного параноидального прихода и всячески настаивал на конфеденциальности методов и результатов работ. Что-ж, не будем посягать на его законное право страдать херней. К тому же, говоря по правде, интересного там мало: банальные учеты и типовые анализы: какой-нибудь дискретный анализ и среднее с вариацией. Другим словом, беспросветная тоска. Я же хочу рассказать вам о настоящем веселье.

Итак, друзья, тушите свет, зажигайте свечи, разбрасывайте по полу каштаны. Наливайте себе стакан до краев и располагайтесь удобнее, ибо во многом знании много печали, но памятуя про in vino veritas едва ли найдется тот, кто не заметит очевидного парадокса в измышлениях старинных мудрецов. Однажды придет и мой Мелет, сын Мелета, пифеец, но пока, дрожание рук походит на кривую судьбы Агриппины младшей, между Нероном и Тиберием велик соблазн немного повертеть на граненом стакане кровавый сапожок. Веселье, друзья, конечно же веселье служит нам путеводной нитью этого вечера! Все начинается с того, что раз в полторы недели вы до утра обрабатываете вымокшие бланки с кровавыми пятнами. Пеленг такой-то, широта такая-то, долгота такая-то, фото номер N. Три березы, две елки ноль пять, елка полтора, осина, две рябины, сосна ноль пять. Пишите, чертите, вслушиваетесь в свой голос с диктофона, просматриваете отснятые файлы. Что-бы не заснуть, выходите на улицу покурить и вновь возвращаетесь. Веселитесь изо всех сил.

102_4609

А через несколько часов, едва небо начнет светлеть, двери электрички закрываются и вы наслаждаетесь красотой и величием заоконных пейзажей:

102_3538
Чем дальше, тем пейзажи все красивее и величественнее
102_3523
И конечно-же, все веселее и веселее
102_3571

Но все проходит, стоит лишь выйти на пробу. Встанешь на первую вешку, оглянешь взором предстоящий фронт, сплюнешь и произнесешь благословенное «ёб твою мать». А из динамика телефона тебе отвечает лектор Петухов. «Давайте начнем!»: говорит он. А действительно, давайте начнем! И с этими словами ебнешь свою профилактическую соточку, затянешься поглубже чем бог послал и выпуская дым, начинаешь орудовать тесаком, вязать ленты, писать и бесконечно фотографировать.

102_4755

Прежде чем вы решитесь ввязаться в это дело, нужно понимать куда именно вам предстоит ехать. Как найти вырубки нужного типа леса, возраста, площади и транспортной доступности? Если вы сможете найти где-то карту с такими данными — честь вам и хвала. Но практика показывает, что самые ценные инструменты, для изготовления которых отводятся месяцы предполевых работ всегда приходится собирать в последний момент на коленке. Другими словами, нам нужно составить такую карту самому, иначе все у нас пойдет через жопу. Погнали?!

Карта рубок. Что есть рубки с точки зрения дешифрирования? правильно, рубки есть видоизмененный лес. Значит не ебем себе мозг, а прямо так, английским по белому пишем в поисковой строке браузера: «forest change map». По первой же ссылке попадаем на известный проект Global Forest Change:

111

Классная штука этот GFC. Спецы из Мэрилендского университета, Гугла и Геологической службы США, обработав огромное количество ландсатных снимков, выдали в качестве результата данные по изменению лесного покрова за период с 2000 по 2012 гг. Это то что нам надо, скачиваем данные на нужный нам регион в формате GeoTiff.

Теперь этот слой нужно разнести по типу леса, возрасту, площади и транспортной доступности. Сразу скажу, что первое — больше из области фантастики, ибо до тех пор, пока мы используем в качестве лесной типологии псевдонаучные фантазии времен раннего палеолита, никакой хитрый алгоритм применить не удастся. Да в этом и нет особой нужды, ибо как вы понимаете, основная доля всех рубок представляют собой кисличники, реже свежие черничники. Я бы на месте лесозаготовителей тоже всякого рода долгомошники вертел на харвестере, ибо рубль выберешь, рубль двадцать в гать утопишь.

102_4492

Но зато разбиение данных по остальным параметрам уже дело техники. Для начала векторизуем наш растр в QGis:

222

Из производного шейпа аттрибутивной выборкой по возрасту рубки извлекаем новый полигональный слой. Далее, через калькулятор полей считаем площадь каждого полигона, и удаляем слишком крупные и мелкие полигоны. Остается только исключить рубки, находящиеся в самых недоступных ебенях. Но это тоже не космос: скачиваем через overpass дорожную сеть OpenStreetMap, Строим вдоль проезжих дорог буферную область, доступную для пешего подхода и после этого удаляем все полигоны рубок, которые не пересекаются полученным буфером.

Все, слой готов. Экспортируем его в kml и  SAS.Планету, настроив подходящий вид:

333

Основной недостаток такого метода в том, что в выборку попадают рубки вытянутой и неправильной формы, совершенно неудобные для закладки учетных площадок. Кроме того, помимо рубок, встречаются еще естественные усыхания, пожары, ветровалы и подтопления. Последние, благодаря бобрам, особенно часто. Редкостные, скажу я вам, мудаки, эти бобры. Мало того, что эти пидоры столько леса хорошего затопили, так они еще и невкусные как водоросли. Их что жарь, что вари — все какая-то поебень получается.

Загружаем данные в навигатор и вперед — рубить ветки, месить говно и давить фиолетовые грибы

102_3089

Можно ли размещать площадки на волоках и в каналах? С одной стороны это тоже часть территории. С другой стороны, размещение учетных площадок в таких местах вносит не отслеживаемую погрешность. Вопрос можно поставить даже шире: уместно-ли рассматривать общие показатели восстановления для территории с комплексными видами нарушений? Правильно, неуместно. Пасеки — отдельно, волока — отдельно, земля — крестьянам, мудаков — нахуй.

102_4557Существует несколько принципов, которыми следует руководствоваться приступая к любым полевым работам. Конечно-же, следует помнить о нарастании коэффициента обалдевания: с каждым разом вы, вне зависимости от вашей старательности, будете выбирать наиболее легкие для описания площадки. Это неизбежно приводит к систематическому занижению результатов на 5-15%. Избежать этого можно путем формализации процедуры выбора точки описания: например подобно геоботаникам кидать дрын, служащий, после падения, стороной учетной площадки. Можно и протягивать на определенное расстояние рулетку по выбранному пеленгу. Но этот подход работает плохо даже на рубках трехлетней давности

102_3350

Как не вымеряй расстояние на вырубке по рулетке, все равно будет лажа. Либо закрадывается ошибка за счет изгибов рулетки, либо за счет пробики створов колоссально возрастает трудоемкость. Не ебите себе мозг, отмеряйте расстояние шагами, контролируйте себя по навигатору и не забывайте про коэффициент обалдевания.

Любые поточные полевые наблюдения кроют в себе опасность смещения данных. Стоит вам пропустить наблюдение на одной из учетных площадок, как ценность всех дальнейших наблюдений оказывается равной нулю. Но каждый раз заполнять чек-лист слишком затратно по времени. Поэтому мой вам совет: синхронизируйте все что только возможно. И немедленно. Если вы стоите на восьмой учетной плошадке, пусть номер вашей точки в навигаторе будет «508», а номер фотографии «18». Организуйте все так, что-бы пропущенное наблюдение моментально бы искажало конструкцию данных.

Нет ничего более тупого чем бесконечно записывать номера фотографий. Если вы синхронизировали нумерацию наблюдений, то вам стоит записывать только номера фотографий в точках контроля и номера ошибочно сделанных снимков. По завершению цикла наблюдений, просто суммируйте количество фотографий для дополнительной проверки. Ну и конечно же не забывайте про снимки-хуимки.

Очень часто люди не могут отделить фотографии одного ряда наблюдений от другого. Ну а хули, спрашивается вы фотографировали площадки на одной пробе, потом перешли через дорогу и не сделав ни одного лишнего кадра приступили к фотографированию площадок другой пробы? Естественно, потом при сортировке снимков приходится морщить ум и сравнивать время и содержимое кадра. Делайте проще, перед началом каждой пробы делайте несколько снимков-хуимков: фотографируйте какую-нибудь дичайше специфическую ебанину, например свой еблет, или рукав, или бланк с описанием. Помимо упрощения сортировки снимков, это позволит вам получить психоделический набор ебанутых фотографий для плаката «Я в двадцать пятый раз спрашиваю, что это за хуйня?»

hand

Стоит ли говорить о том, что на пробе вы записываете не количественные, а качественные показатели? Правильно не стоит. Потому что любые количественные измерения есть суть более формализованные качественные. И если в одной графе бланка записано «87 берез», а в другой «92 березы», только безумец будет утверждать, что во втором наблюдении на пять берез больше. Разумный человек сразу понимает, что на обоих площадках одинаковое количество подроста, чуть меньше сотни стволиков, но определенно больше полусотни. И во втором наблюдении их может оказаться чуть больше, хотя если подсчитать, может и чуть меньше. «А чего-же не подсчитать их точно?» — спросит какой-нибудь далекий от биометрии человек. А подсчитать их точно невозможно, ибо натуральные числа используемые для счета представляют собой слишком грубый инструмент, не позволяющий описывать переходные состояния. Каждый стволик считается по отдельности, но в какой момент растущий стволик отличается от новой ветви, особенно если речь идет о корневой поросли? Нет, коллеги, натуральный счет тут не подходит, да и действительные числа едва ли применимы. Я уж не говорю о космической сложности таких измерений.

102_4321

Нахрена столько сложностей в подсчете кустов? А сложностей никаких и нет. Рост профессионального геоботаника составляет один метр семьдесят восемь сантиметров. Поэтому для определения количества подроста на гектар, ему достаточно сосчитать количество стволов, на которые он упадет если выпьет на стакан больше положенного и умножить полученный результат на тысячу. Причем, поскольку упасть он может в разные стороны, подсчет стволиков ведется на всей площади круга, радиусом 1,78 м. Обернулся вокруг себя — видишь, что при падении непременно подомнешь под себя три елки и пять берез. Следовательно, на гектаре три тысячи стволов елового подроста и пять тысяч подрастающих берез. Если вам трудно представить, как вы пьяный валяетесь по кустам или ваш рост далек от идеала, можете крутить вокруг себя рейку аналогичной длины, а еще лучше приспособьте для этого дела телескопическую удочку. Впрочем, навык приобретается быстро.

В чем же секрет? Да все просто: Pi*r^2 => 3.14*1.78*1.78 ≈ 10 кв. метров. Гектар есть 10 000 кв. метров, а следовательно наша круговая площадка есть тысячная часть гектара.

Гораздо сложнее определять не количество, а возраст подроста. Если у сосны еще можно быстро подсчитать количество мутовок, примерно соответствующее числу прожитых лет

102_4702

то с елкой уже сложнее, мутовки у нее выражены гораздо хуже

102_4754
А у лиственных вообще хрен возраст определишь. Разве что по числу побегов или годовым кольцам, но все это разовые замеры. Обычно прикидываешь зависимость возраста от высоты для нескольких модельных стволиков, и далее интерполируешь сотни и тысячи наблюдений.  Ценность таких данных сами можете себе представить. С другой стороны, разве можно получить бессмысленные данные иначе как занимаясь бессмысленным делом?

Очередной день рождения молодой березки — место нарастания нового побега.

108_5032

Нельзя забывать о том, что для сосны и елки подчас не столь важен возраст и количество, сколько жизненное состояние. Определяется оно просто. Подходите к дереву:

108_4994

И делаете так:

108_4995

Еще раз продемонстрирую. Подходите к дереву:

108_5026

Хуяк!

108_5028

А далее руководствуетесь вот этой схемой определения жизненного состояния:

shema

При планировании подобных исследований, особое внимание следует уделить времени проведения работ. В условиях Северо-Запада Русской равнины, сплошные рубки обычно приводят к повышению уровня грунтовых вод. Конечно, если вам предстоит работать преимущественно в скальных, лишайниковых или брусничных типах то все ок:

102_4673Но скорее всего, вам придется обследовать долгомошники, черничники и кисличники:

102_4757

Нетрудно догадаться, что если вы решите работать в этих местах в начале лета, вас непременно заебут комары. А если перенесете работы на осень — замучаетесь подсчитывать лиственные породы. Листопад у затененного подроста и подлеска начинается во второй половине августа, причем уже в двадцатых числах бывает трудно отличить осину от березы, и живую рябину от сухой ветки. Поэтому конец июля — начало августа — ваше все.

Не всегда разумно идти к рубке кратчайшим путем. Ведь срубленный лес как-то вывозили, а значит к любой рубке идет дорога. В каком она состоянии это уже отдельный вопрос.

102_4555

При подготовке маршрута, выбираете место наибольшей концентрации подходящих рубок, связанных между собой достаточными для неутомительного продвижения дорогами и потрясающие прогулки по лесной глуши вам гарантированы. Главное, что-бы погода была не как в это лето: каждый день либо мелкий нудный дождь, либо грозовые ливни.

102_4583

С другой стороны «полное отторжение от бреда нашего» вам гарантировано. Да и как может быть иначе в условиях, когда последние мировые новости узнаешь из лесохозяйственных столбиков?

108_4996

Да, дожди утомляют, но с другой стороны комаров и клещей мало. Зато много грибов, а брусники вообще как говна:

102_4553

И все же мне сказочно повезло. Окончание лета я встретил в Сланцевском районе. Дожди прекратились на целую неделю и все живое выползло погреться и просохнуть перед наступлением первых холодов.

Вылезли кистехвостки (Orgyia antiqua):

102_3369Вылезли семиточечные божьи коровки (Coccinella septempunctata):

108_4790

и разная другая живность

108_5033

Только гадюк стало гораздо меньше — весь август они ползали под ногами, что довольно сильно меня напрягало ибо змей я панически боюсь с раннего детства. Глядя на всю окружающую красоту, просто нельзя было не вспомнить, что даже живущий один год жук-навозник умеет ориентироваться по звездам, а я за четверть века так ничему и не научился.

dscn9008

Зато каждый вечер после работы, я выбирал наиболее живописное место, собирал дрова, набирал из ближайшего ручья или лужи воду, любуясь попутно великолепным закатом.

108_4964

Темнота стала наступать гораздо быстрее чем в начале лета. Я укладывал на свою лежанку рюкзак, разводил костер и устраивался поудобнее.

108_4905

Подогревал себе фасоли в помидорном соусе, кипятил крепкий чай и наливал маленькую рюмку водки

108_4907

После, выпив и закусив, откидывался на спину и закуривая, посылал огоньком сигареты сигналы в самые глубины млечного пути. У меня была своя маленькая программа «SETI» и звезды охотно мерцали мне в ответ. Так я и засыпал, без всякой палатки, укрываясь на ночь исключительно звездным небом. Утром меня ждал новый маршрут, днем — новые обследования, а вечером — новый уютный костер.

Однажды утром я проснулся от холода. Костер погас, ветер гнал кучевые облака и спешить мне было некуда. Лето закончилось, а вместе с ним завершились работы по оценке лесовозобновления на вырубках. Мне пора было возвращаться обратно — до конца полевых работ оставалось менее полутора месяцев. Вскипятив себе чаю я собрал свой нехитрый скарб и закопав кострище, направился в сторону ближайшей дороги.
108_5040

Математическая формализация единиц растительного покрова

Математическая формализация единиц растительного покрова

В основе «классических» методов классификации растительного покрова (Александрова, 1969) положены принципы булевой логики, которая опирается на следствие аддитивного свойства множеств (образование непересекающихся подмножеств при делении множества).

Для сложно устроенных (Растригин, 1981) природных систем, характерна не аддитивность, а эмергентность признаков.  Пренебрежение этим фактом ведёт к тому, что растительность внутри синтаксонов недостаточно охарактеризована, либо число синтаксонов неоправданно велико.

Используемые классификации не годятся для количественного представления выраженности тех или иных синтаксонов, что является тормозом для изучения структуры и динамики растительности. Требуется метод разделения растительного покрова на математически формализованные единицы.

Метод классификации растительности, который я предлагаю построен на обобщённом математическом аппарате теории множеств. Характеристика синтаксонов базируется на теории нечётких множеств (Заде, 1976).

Растительное сообщество представляет собой конечную группу, в связи с чем, признается дискретность пространственных границ. В тоже время, растительное сообщество не является примером непрерывного множества, поэтому описать его границу непрерывной, всюду дифференцируемой кривой невозможно. Таким образом, пространственные границы дискретны, но средствами эвклидовой геометрии выразить их невозможно (псевдоконтинуум).

Пространственные границы формализованы как мажорирующий контур растений. Если представить, что для каждой клетки растения характерны три координаты положения и координата времени, то мажорирующий контур будет проходить через клетки с максимальным значением координат. В самом простом случае это будет контур с параметрами равными максимальной высоте, длине и ширине растения, изменяющийся со временем, но сохраняющийся до момента гибели последней особи. В общем же случае, мажорирующий контур представляет собой объект с фрактальными границам.

Биологической основой новой классификации является трансформированный эколого-доминантный метод разделения растительного покрова (Александрова, 1969). Наличие эдификаторных свойств разной силы предполагается у всех особей сообщества. Основанием для выделения единиц растительности является степень обилия видов или групп видов. Она выражается через объем, занимаемый видами в пространстве (заполненность мажорирующего контура).

Основной единицей растительного покрова является специалитет – группа растений одного вида, целиком занимающая в пространстве объём своего мажорирующего контура.

Каждый специалитет обладает свойством истинности, выражающим степень его принадлежности к тому или иному синтаксону. Истинность характеризует степень заполненности мажорирующего контура органами растений. Примером абсолютно истинного  специалитета (истинность равна 1) можно считать накипной лишайник Rhizocarpon geographicum (L.) DC.:

IMG_1332

 

Большинство специалитетов имеет значительно меньшую истинность.  Так расчётная истинность еловых специалитетов на Северо-Западе России составляет в среднем 0,001-0,003.

Специалитеты объединяются в группы. Группы — это комплекс специалитетов в границах мажорирующего контура доминантного специалитета. Во многом этот класс напоминает эколого-ценотическую группу или тип леса в лесной типологии (Федорчук и др., 2005). В естественных лесах Северо-Запада России встречаются лишайниковая, кустарничковая, мелкотравная, неморальная, сфагновая, багульниковая, долгомошная, болотнотравяная, таволжная и приручейная группы (Голубев, 2012). Луга представлены насыпной, влажнозлаковой, злаковой и травяной группами (на основе данных: Нешатаев, Егоров, 2006). Поскольку мажорирующие контуры специалитетов (в том числе доминирующих) пересекаются, зачастую наблюдается пересечение групп.

Группы формируют формы. Формы — комплекс групп, занимающих в пространстве объем, ограниченный мажорирующим контуром групп с единой жизненной формой доминантов. Выделены древесные, кустарниковые, кустарничковые, травяные, моховые, лишайниковые, водорослевые, лиановые, подушковые и гетеротрофные формы.

Если особь вида s одновидового сообщества S={s1, s2, s3,…, sn} представить как множество клеток с параметрами: длина, ширина, высота, время s={(x1, y1, z1, t1) , (x2, y2, z2, t2),…, (xn, yn, zn, tn)}, то понятие специалитета можно формализовать как множество Sp={s1, s2, s3,…, sn}, такое, что:

Дальше в исходном тексте шли формулы, а так-же формализация понятий группы и формы. Но за давностью лет информация проебалась. Если не ошибаюсь, полный текст опубликован в сборнике материалов конференции «Математическое моделирование в экологии», что проходила в Пущино между 2010 и 2014 годами. Там же есть и недостающие формулы. Я их здесь публиковать не буду, поскольку, во-первых, у меня их почему-то нет под рукой, во-вторых, я сейчас еду в уазике и по тряской дороге пью пиво, а в-третьих, хуйню эту все-равно никто читать не будет, так что и так сойдет.

Демонические лики идиотизма

Так подготовка к экспедиции еще никогда не проходила. Хотя, что уж греха таить, ко многим экспедициям люди сейчас вообще не готовятся: обсудят за пару дней детали маршрута, покидают в рюкзак вещи и в путь. В этом даже есть некий шарм вольности, мол настоящий профессионал готов к работе всегда. Но все-таки это безответственность, а в моем деле безответственности допускать было нельзя.

Несколько лет подряд я мотался по всей стране изучая растительность Ростовской, Воронежской, Липецкой, Ленинградской и Мурманской областей, четырежды пересекал Полярный Урал (правда на поезде), ходил по россыпям гранатов в прислоненный к скале горный клозет, дрался со щуками пустой бутылкой из под коньяка и едва не утопил в Белом море корабельный инклинатор. Весьма увлекательно, в общем, жил. Но почти за каждой поездкой наряду с собранными материалами и впечатлениями тянулся негативный шлейф неорганизованности и пустой суеты. С каждой новой поездкой я все больше убеждался в необходимости организации собственной экспедиции. Здравый смысл подсказывал мне плачевность вероятных итогов такого предприятия, но что стоит даже самая структурированная логика перед лицом амбициозного тщеславия?

Мечты обычно сбываются после получения весомого пинка от реальности. Я не стал исключением. В какой-то момент дела в моей компании стали настолько печальны, что я переключился на покраску детских площадок и оградок на юге Санкт-Петербурга, а после вообще прекратил работу своей скромной лаборатории на Васильевском острове и устроился работать в порт.

Поскольку к тому времени я был знаком с трудами Сукачева, Морозова, Клементса, Гордягина, Шенникова, Раменского, Работного, Василевича, Грейг-Смита, Одума и Розенберга, имел опыт оценки и анализа растительности и даже обладал скромными заслугами в области изучения фрактальной структуры живого напочвенного покрова, в порту мне удалось устроиться по специальности — газонокосильщиком.

Это было славное время. Возвращаясь в четыре утра на велосипеде с привязанной к нему газонокосилкой и еще не зная, что бразильские футболисты проиграли немецким со счетом семь один, я омрачался лишь мыслью о предстоящей через несколько часов работе по разработке генерального плана деревни Иссад в офисном аквариуме с видом на Неву. Но всему есть предел и в один из дней я, закончив стрижку газонов, покраску детских площадок, разработку генерального плана и отчет об экологических рисках полигона промышленных отходов Ленинградской атомной станции, сел на самолет до Ростова, погасил кредитную задолженность своей фирмы, купил хорошую лодку в магазине на Победе Революции, на остаток приобрел две бутылки пива и устроился разнорабочим на стройку.

Собственно, с этой лодки все и началось. Пока ее не было, все мечты об экспедиции туманно растворялись в суете, но после приобретения плавсредства медлить нельзя было не секунды, поэтому спустя два года я решился сплавиться по реке Аксай.

За время жизни в Петербурге я заимел от коллег вредную привычку обосновывать любые свои путешествия научной необходимостью. Вы напрасно считаете, что полевая командировка это то же самое, что поездка к теще в деревню. Все научные поездки начинаются одинаково: нарежет себе человек свежий батон с толстым куском колбасы, включит телевизор а там новости идут, скажем про Воркуту. Показывают кадры с работающим экскаватором под оптимистичный голос ведущего: «В Воркуте несмотря на многочисленные проблемы продолжается подготовка к отопительному сезону. Во вторник в администрации президента прошло селекторное совещание на котором мэр Воркуты заверил, что сроки сдачи…» и в таком духе.

— Так! — Думает человек с куском колбасы на батоне. Странно, что я еще в Воркуте не был. Там уже вовсю тундровая зона, интересно было бы там поприключаться. Заодно там можно и рыбы половить неплохо. У меня на август поездки пока никакие не запланированы.

И вот через несколько дней уже остро стоит необходимость изучения влияния угледобычи на динамику оттаивания тундровых почв на Европейском Севере. Решить эту проблему нужно непременно не позже ближайшего лета, желательно в августе (да-да, это обусловлено спецификой оттаивания почв). Не требуется больших экономических познаний, для понимания того, что такой подход к исследованиям возможен только в очень крупной компании с обширнейшей географией многочисленных заказов. Или в российских государственных организациях, где никто не может адекватно объяснить на что и зачем тратятся деньги.

Моей компании, к сожалению, пока еще до обширнейшей географии заказов далеко, но к счастью, из государственного учреждения я был уволен ко всем чертям еще до покупки лодки. Потому первым вопросом, который надлежало решить при подготовке к экспедиции — как вернуть затраченные на нее деньги.

Где взять деньги вопросов никогда не возникало. Поскольку я очень трепетно отношусь к своим финансовым обязательствам, получить кредит мне удалось даже в условиях тотального помешательства. Благо, кредитная история у меня хорошая, а сумма смешная. Мне кажется это честный подход. Отчего-то среди моих коллег из государственных учреждений принято постоянно жаловаться на нехватку финансирования научных исследований. При том, что реальная ценность большинства получаемых результатов ничтожна. Конечно, от идеалов высокой духовности я отстранился навсегда еще с юных лет, начав сбывать рыночным торговцам краденные на ткацкой фабрике болты от станков. Но в даже роли беззаветного альтруиста я нисколько не возбуждаюсь от пафосных речей про безмерные исторические долги человечества перед наукой.

Прежде всего нужно было определиться с товаром, который я буду продавать. Не продавать я не мог. Без продаж невозможно покрыть затраты на экспедицию. А путешествовать на свои деньги я мог бы и без претензий на научные исследования. Что может продавать никому не известный человек, путешествоваший в надувной лодке на маленькой реке? Рекламу? — смешно. Гербарий пойменных растений? — еще смешнее. Наловленных ящериц и змей? Может они и продадутся, но выручу я за них копейки, а если не успею их быстро продать профессиональным террариумистам они наверняка передохнут. К тому же у ящериц есть обыкновение при неподходящих обстоятельствах лишаться хвостов и терять товарный вид, а змей я панически боюсь с детства.

Оставался только один вариант — продать книгу о путешествии. Поскольку я известен в основном как автор печально известных очерков о судьбах России и месте лишнего человека в ее истории, вариант с книгой мне казался наиболее реальным. К тому-же книга никого не кусает, не дохнет и не отбрасывает хвост. А еще книга — это лучший подарок. Ее всегда можно кому-нибудь подарить. А лучше продать. А если будут плохо брать в интернете, всегда можно спуститься в метро и нагло попирая административный кодекс, продать весь тираж там. В конце концов, если уж барыжить, то почему бы не делать это интеллигентно, продавая свои книги?

Так я начал подготовку к экспедиции. Не с проработки маршрута. Не с закупки тушенки. И даже не с формулирования научной темы. Начал я с того, что запустил калькулятор и начал считать расходы на типографию.

Так, сверстаю я, допустим сам, все-таки два года главным редактором в журнале работал. Корректорскую правку тоже заказывать не буду, во-всяком случае для первого тиража. Если найдут ошибки всегда можно сказать, что я стал таким диким путешественником, что стал забывать человеческий язык. А вот без всего остального не обойтись.

Из чисто экономических соображений было ясно, что книга должна быть черно-белой на восьмидесятиграммовой бумаге с цветной обложкой на сто тридцатой меловке и сто тридцать пятой ламинацией на обеих сторонах. Я просчитал все, вплоть до количества полос, строк, типа крепления блока и наиболее выгодной верстки. По всему выходило, что всего за четыре года все вложенные деньги я верну и начну получать небольшую, но чистую как вода в дистилляторе, прибыль. А если инфляция будет меньше ожидаемых 10-15 процентов, то я вообще озолочусь.

После этих расчетов уже не составляло труда рассчитать объем материала, который необходимо собрать. Нужно было только определиться с объектами моего интереса и распланировать-таки маршрут хотя-бы в общих чертах. Подготавливая карту сплава я неожиданно удачно разделил весь маршрут на 144 отрезка, что без остатка укладывалось в запланированный девятидневный маршрут. За исключением двух неприятных мест вся акватория для лодки была проходима, во-всяком случае, теоретически. Поэтому зависнув на несколько недель в сайтах туристов, охотников и рыбаков, попутно отыскав сайт моей любимой газеты «Рыбак Рыбака» и выяснив, что непреодолимых препятствий нет я вступил в воды своего Рубикона.

В банке, перед тем как поставить подпись, ко мне ненадолго вернулся рассудок и здравый смысл. Передо мной лежал кредитный договор, потраченные деньги по которому я собирался вернуть продав книжки о своем путешествии на надувной лодке по маленькой степной речке.

— Вот здесь и здесь распишитесь — девушка поставила галки напротив необходимых полей. И рассудок и здравый смысл видя это в один голос закричали одно и то же.
— Ты что делаешь, идиот?
— Живу — ответил я. И подписал.

Так подготовка к экспедиции еще никогда не проходила.

Допустимые пределы использования теории нечетких множеств в экологическом моделировании

Описаны допустимые пределы использования теории нечетких множеств, обусловленные синергетическим эффектом в природных системах

1. Введение

Успешное применение теории нечетких множеств (Заде, 1976) в технике привело к возрастанию популярности нечетких вычислений в других сферах, в том числе в экологическом моделировании. Моделирование растительного покрова с помощью нечетких множеств позволяет объединить континуальный и дискретный подход в рамках одной модели (Голубев, 2012). Это создает ошибочное ощущение универсальности данного подхода. Допустимые пределы использования теории нечетких множеств, как и факторы, обуславливающие эти пределы до сих пор не определены.

2. Применение теории нечетких множеств

Теория нечётких множеств представляет собой развитие классической теории множеств. В отличии от последней, в теории нечетких множеств один элемент может принадлежать одновременно нескольким множествам. При этом степень принадлежности его к тому или иному множеству выражается при помощи функции принадлежности (характеристической функции). Значение характеристической функции обычно является дробным числом в диапазоне от 0 (элемент абсолютно не принадлежит множеству) до 1 (абсолютная принадлежность элемента множеству) (Заде, 1976).

В качестве примера применения теории нечетких множеств в экологических моделях можно привести нечеткую типологию лесов Северо-Запада России (Голубев, 2012). Данная типология основана на новейших лесотипологических исследованиях (Федорчук и др., 2005) и принципах классификации нечетких множеств (Заде, 1976). Серии типов леса в типологии выделяются на основе обилия групп индикаторных видов. Для каждой серии характерна индикаторная группа с уникальным набором видов. Растительное сообщество может одновременно относиться к одной (истинной) серии или нескольким (переходным) сериям. Истинная серия характеризуется присутствием только одной индикаторной группы с суммарным проективным покрытием травяно-кустарничкового и мохово-лишайникового яруса 100 %. Показатель истинности серии рассчитывается как мера количественного сходства (например, коэффициент Чекановского (Словарь…, 1989)) между рассматриваемым растительным сообществом и истинной серией типа леса.

Одним из ключевых преимуществ такой типологии является возможность обоснованной интерполяции данных. Зная значение индикационных параметров (например, агрохимических почвенных показателей) в истинных типах леса (или типах с известной истинностью), мы можем рассчитать эти параметры для произвольного участка леса на основе его нечетких лесотипологических показателей (близости к тому или иному типу леса). Результаты расчетов будут содержать погрешность, иногда значительно искажающую результаты. Основной причиной данной погрешности является неприменимость теории нечетких множеств к описании природных систем, которая проявляется в возникновении синергетического эффекта при объединении различных множеств природных объектов.

3. Синергетический эффект при объединении нечетких множеств

Синергетический эффект — эффект взаимодействия нескольких систем, характеризующийся тем, что их совместное действие существенно превосходит простую сумму действий каждого отдельного компонента (Жилин, 2004). Частным случаем синергетического эффекта является эмергентность — свойство факторов образовывать при совместном влиянии новый фактор, отличный от исходных и от их суммарной мощности.

В нечетком типологическом ряду «лишайниковая-кустарничковая-мелкотравная» (серии типов леса) (Голубев, 2012), кустарничковая серия не является простой механической смесью лишайниковой и мелкотравной серий. В связи с этим индикационные показатели, рассчитанные на основе близости кустарничкового типа леса к лишайниковому и мелкотравному будут содержать определенную ошибку. Величина этой ошибки может быть использована как показатель мощности синергетического эффекта: чем больше расхождение реальных данных с расчетными, тем менее сообщество похоже на механическую смесь других растительных сообществ (и тем менее применимы к нему разработанные для других типов леса хозяйственные мероприятия).

4. Расширение пределов использования теории нечетких множеств

Из приведенного примера следует, что теорию нечетких множеств допустимо применять лишь для систем с незначительным синергетическим эффектом. С более примитивной лесохозяйственной точки зрения это устранимо за счет введения поправочных коэффициентов, рассчитанных указанным методом для каждого из типов леса. В то же время, невозможно построение на основе теории нечетких множеств аппарата, пригодного для анализа состояний детерминированного хаоса в природных системах.

Математическим аппаратом, расширяющим теорию множеств может служить аппарат субъективных вычислений, в котором изменение характеристической функции принадлежности элемента к одному из двух подмножеств не влияет на характеристическую функцию принадлежности элемента ко второму подмножеству.

5. Выводы

Применение теории нечетких множеств допустимо в системах с пренебрежимо малым синергетическим эффектом объединения систем. Ограниченно эту теорию допустимо использовать в практической деятельности с использованием поправочных коэффициентов на синергетический эффект (эти же коэффициенты возможно использовать в качестве меры тесноты взаимосвязи элементов в растительном сообществе). Для характеристики состояний детерминированного хаоса в экологических моделях применение теории нечетких множеств недопустимо.