Обильные фильтруации

Я вертел на имморалистическом хую все советы о том, как следует писать эти очерки. Но вы так часто просите меня фильтровать посты перед публикацией, что на этот раз я не сдержался и пошел у вас на поводу.

Буду фильтровать. Начну с фрагмента снимка SRTM:

Ну а хули елозить-то? Фильтровать — так фильтровать. К великой моей печали, вы в просьбах своих нихуя не говорите о предпочтительных способах фильтрации. Что-ж, поэкспериментируем, дабы никто не ушел обиженным.

Начнем с DTM-фильтра, в основе которого лежит статья Георга Фоссельмана. Технология фильтрации основана на предположении о том, что резкий перепад значений высоты на незначительном пространстве DEM-растра свидетельствует не об особенностях рельефа, а о наличии объектов местности, искажающих ЦМР. Проще говоря, если на левом пикселе высота десять метров, а на правом тридцать, то скорее всего на местности в данных точках вы вместо обрыва/карьера увидите стену леса, здание или другую нерельефную ебанину. Фильтр просматривает растр скользящим окном заданного радиуса и отделяет области с уклоном выше указанного. При соответствующих настройках, этот фильтр позволяет не только отделить неестественные превышения, но и разделить растр на слои равнин и уклонов.

На демке с территорией города Шахты, алгоритм фильтрации сбоит на терриконах и отвалах. Впрочем, на таких масштабах уместнее использовать вместо SRTM растры ASTER GDEM. На моем фрагменте все работает прекрасно. Вот вам равнины:

А вот уклоны свыше тридцати градусов:

Главное, помните фильтр только отделяет одни пиксели от других. Дать физическое объяснение результата — уже ваша задача. Вот какого хрена на острове Поперечном такие уклоны? Он же ровный как блин. У меня даже фоточка есть:

Чаще всего подобные искажения возникают за счет растительности. Отделить ее от рельефа практически невозможно. Но если на плакорах с этим можно почти смириться (нужно только забыть про разницу в возрастах, бонитетах, наличие дорог, лугов, болот и полей, ветровалы, бобров, пожары, рубки и усыхания), то получить детальную ЦМР для склонов долин обычно затруднительно. Да чего объяснять-то? Каждый из вас наверняка видел такую взаимосвязь растительности и рельефа:

Но хватит, уже про DTM. Вы можете подумать, что у меня нет чувства такта. Фильтр комочков (Filter clumps — да простят меня профессиональные переводчики) отсеивает связанные пикселы с единым значением, превышающие заданную площадь. Например, вот области в которых соприкасается не менее тридцати пикселов с единым значением высоты:

Мажоритарный фильтр (majority filter) делит растр на сегменты указанного размера. В каждом из них вычисляется значение большинства пикселов, которое впоследствии экстраполируется на всю область. В результате имеем следующее:

Исходный SRTM в приближении:

Результат работы мажоритарного фильтра в том же экстенте:

  • Для понимания, на рисунке ниже черные изолинии с SRTM наложены на красные изолинии с отфильтрованного растра. Результат налицо:

Морфологический фильтр, точнее фильтры. Спешу огорчить всех натуралистов. Умойтесь, к геоморфологии эти фильтры не имеют никакого отношения, даже несмотря на их специфические наименования. Базовых морфологических фильтров два: дилатация и эрозия. Кроме того, активно используются фильтры замыкания и размыкания. В первом применяется сначала дилатация, затем эрозия, во втором — наоборот. Нихрена не понятно? Не проблема. Вот вам иллюстрированная классификация. Основана на лучших моих художественных скиллах вкупе с простейшим графическим редактором:

При дилатации  происходит расширение пикселей, в результате которого изображение становится более светлым и размытым:

Красные линии — горизонтали с растра дилатации, черные — горизонтали SRTM:

При эрозии происходит обратный процесс. Однородные области увеличиваются в размере за счет подавления шума между ними.

Красные изолинии с растра эрозии на фоне черных горизонталей SRTM

Это размыкание

с горизонталями

А это замыкание

с горизонталями

Все, хватит про морфологические фильтры. Это банально и скучно. Самое время испить из фрактальной реки и вспомнить про богов алеатики. Дамы и господа! Леди и джентельмены! Мудачье! Специально для вас, Карл Гаусс со своим фильтром!

— ээээээ, а где растр то?

А не будет растра. Ибо визуально после применения фильтра различия почти не отличить. Суть фильтра в отсеивании областей с заданным стандартным отклонением. Что-бы вы не расстраивались вот вам картинка с изолиниями (standart deviation = 1):

Фильтр Ли. Это к китайцам не имеет никакого отношения, просто я в душе не ебу, как перевести «Multi direction lee filter» на адекватный русский язык. Более того, я с трудом понимаю что это вообще такое, а для чего это — не понимаю вообще. Но раз уж зашла речь про фильтрацию, грех не рассказать про эту хрень.

Фильтр разделяет растр на три дочерних: результат фильтрации, растр минимума стандартного отклонения и растр направления минимума стандартного отклонения.

Результат фильтрации визуально от оригинала не отличим:

Минимальное стандартное отклонение. Тут все почти просто, если найти мануал, объясняющий значение прилагательного «минимальное».  Результирующий растр в псевдоцветах выглядит так (чем краснее, тем выше стандартное отклонение):

Слой изолиний в той же палитре:

Но самое интересное — направление минимума стандартного отклонения. Я воздержусь от комментариев, лучше покажу вам результат и выпью своего пива.

Изолинии по растру направления минимума стандартного отклонения на фоне изолиний SRTM (черные линии):

Гораздо понятнее обстоят дела с ранговым фильтром. Просто указываете ранг сатистики и извлекаете пиксели с нужными значениями. Вот, например, медиана

Изолинии из результата фильтрации (50-й ранг) на фоне изолиний SRTM:

На этом все.

Э, да я смотрю вас не наебешь. Действительно, а как же дивергенция градиента значений растра? Вообще физический смысл лапласиана достаточно условен, типа значений концентрации градиента. Но в нашем случае ситуация проще. Фильтр Лапласа выделяет контуры на растре. В итоге имеем следущее:

Да прибудет с нами псевдоцвет растра итогов применения фильтра Лапласа!

Ну и горизонтали, само-собой. Хотя, это все-таки не горизонтали, а просто изолинии.

Хотя, конечно, проще всего использовать простой фильтр. Особенно, если вы хотите строить горизонтали.

А еще проще совершенно не использовать фильтр. Я лично нефильтрованному вообще приоритет отдаю, у меня как раз тут еще немного осталось.

Надеюсь, на этом, ваша просьба о фильтрации полностью удовлетворена. Всем присутствующим спасибо. Все недовольные могут пройти нахуй, ибо тут у меня суверенный анархизм: хочешь с Бакуниным бухай, хочешь Вольтариану Де Клер еби. А советы ваши по поводу того, как мне следует статьи писать можете в жопу себе засунуть.

С кем не бывает

Дело было так. Стою на остановке в Тосно, никого не трогаю, жду свой пазик в деревню. Вдруг, чувствую в затылке предательски закололи теплые иголки, в глазах потемнело и ноги потеряли силу как прошлогодний агар-агар. Ну все, думаю, пизда пришла. Тут бы не валиться мешком на заплеванный асфальт, сесть на лавку, принять косоносную с достоинством. А вот хрен там. Все лавки бабками заняты, хули что семь утра на дворе. К тому же дико потянуло блевать, а я ввиду врожденной интеллигентности на остановках блевать не привык, поэтому собрав остатки сил утащил свое туловище за угол и повинуясь окончательной страсти перед закрытой дверью «Евросети»изверг из себя в урну следующее:

Модель Лотки-Вольтерра, хоть и является сугубо теоретической, однако в утрированном виде описывает реальные кривые видового разнообразия, что подтверждается авторами, фамилии которых я сейчас, в таком состоянии и не вспомню. Но дело не в этом. Дело в кривых изменения численности популяций этой модели.

Окажись вы на моем месте тогда, наверняка бы все уже поняли, но в то утро божественные пиздюли предназначались мне в одно ебло, а потому придется напомнить о том, что видовое разнообразие и проективное покрытие живого напочвенного покрова связаны между собой примерно как синусоида с косинусоидой (пример грубый но наглядный). Сущность этой взаимосвязи проста: растительное сообщество есть диссипативная структура с присущей ей зависимостью структурных преобразований от интенсивности проходящего через нее потока энергии. Об этом еще в «Полевой геоботанике» писано, нехуй тут рассусоливать. Увеличение потока энергии приводит к повышению сложности системы, и обратно.

Сложность живого напочвенного покрова слагается из двух факторов: видового разнообразия и проективного покрытия. Тут, следовало бы упомянуть о важности видовой изменчивости, особенности проективного покрытия как критерия оценки и хуево проработанных концепциях вида вообще, но не до того поверьте, когда с незрячими глазами блюешь перед урной «Евросети».

Итак, количество видов и проективное покрытие. Первое не имеет верхнего предела, во всяком случае в существующей парадигме. Проективное покрытие, напротив, не может превышать ста процентов, а все возгласы о перекрытиях можно вертеть на ботаническом хую, ибо при желании вместо проективного покрытия можно рассмотреть его божественный аналог — биомассу и тут же убедиться, что рост ее ограничен физическим пространством. Короче, Склифософский: оба фактора влияют на сложность структуры живого напочвенного покрова, но раз уж область значений функции изменения проективного покрытия от объема поступающей энергии ограничена, то за ее правым пределом (за левым как вы понимаете живого напочвенного покрова вообще нет) сложность структуры зависит исключительно от видового разнообразия. Внутри области значений функции изменения проективного покрытия влияние видового разнообразия на сложность структуры незначительно при низком проективном покрытии, однако возрастает, при покрытии высоком. Проективное же покрытие, напротив по мере возрастания вносит все меньший вклад в увеличение сложности. Говоря языком Гете: «средь пышных травостоев примат разнообразья и похуй густота его сложенья, но средь редин пустынных, обилие лишь важно и до пизды нам все разнообразье».

А вот и она, великая секунда откровения: одна из немногих вещей, за которые я люблю жизнь во всех ее проявлениях. Вы только посмотрите как до кровавых мозолей на глазах похожи кривые Лотки-Вольтерра на кривые изменения видового разнообразия и обилия видов в живом напочвенном покрове! Конечно же, похожесть еще ни о чем не говорит, не тычьте художника в мольберт. Однако, в потенции, это новый взгляд на оценку структурных изменений экосистемы, включая ее животный компонент. Судите сами: те же два параметра. Количество хищников ограничено и не может превышать некоторого предела, после которого эти мудаки выжрут все и подохнут от голода.  Количество жертв тоже не может расти бесконечно, однако в рамках системы, с наличием хищника верхней границей их роста можно пренебречь.  Примитивно говоря: может быть очень много мышей и мало лисиц, но очень много лисиц и мало мышей быть не может, ибо жрать нечего.

Сразу же напрашивается сравнение проективного покрытия с хищником. Юморная, конечно, аналогия, но напомните-ка мне, а не Тильман ли развивал гипотезу о снижении видового разнообразия за счет усиления доминантной роли нескольких видов? И в чем кроется наша уверенность в том, что мы не спутали в очередной раз повод и причину происходящих процессов?

Тут-то меня и отпустило.

Математическая формализация единиц растительного покрова

Математическая формализация единиц растительного покрова

В основе «классических» методов классификации растительного покрова (Александрова, 1969) положены принципы булевой логики, которая опирается на следствие аддитивного свойства множеств (образование непересекающихся подмножеств при делении множества).

Для сложно устроенных (Растригин, 1981) природных систем, характерна не аддитивность, а эмергентность признаков.  Пренебрежение этим фактом ведёт к тому, что растительность внутри синтаксонов недостаточно охарактеризована, либо число синтаксонов неоправданно велико.

Используемые классификации не годятся для количественного представления выраженности тех или иных синтаксонов, что является тормозом для изучения структуры и динамики растительности. Требуется метод разделения растительного покрова на математически формализованные единицы.

Метод классификации растительности, который я предлагаю построен на обобщённом математическом аппарате теории множеств. Характеристика синтаксонов базируется на теории нечётких множеств (Заде, 1976).

Растительное сообщество представляет собой конечную группу, в связи с чем, признается дискретность пространственных границ. В тоже время, растительное сообщество не является примером непрерывного множества, поэтому описать его границу непрерывной, всюду дифференцируемой кривой невозможно. Таким образом, пространственные границы дискретны, но средствами эвклидовой геометрии выразить их невозможно (псевдоконтинуум).

Пространственные границы формализованы как мажорирующий контур растений. Если представить, что для каждой клетки растения характерны три координаты положения и координата времени, то мажорирующий контур будет проходить через клетки с максимальным значением координат. В самом простом случае это будет контур с параметрами равными максимальной высоте, длине и ширине растения, изменяющийся со временем, но сохраняющийся до момента гибели последней особи. В общем же случае, мажорирующий контур представляет собой объект с фрактальными границам.

Биологической основой новой классификации является трансформированный эколого-доминантный метод разделения растительного покрова (Александрова, 1969). Наличие эдификаторных свойств разной силы предполагается у всех особей сообщества. Основанием для выделения единиц растительности является степень обилия видов или групп видов. Она выражается через объем, занимаемый видами в пространстве (заполненность мажорирующего контура).

Основной единицей растительного покрова является специалитет – группа растений одного вида, целиком занимающая в пространстве объём своего мажорирующего контура.

Каждый специалитет обладает свойством истинности, выражающим степень его принадлежности к тому или иному синтаксону. Истинность характеризует степень заполненности мажорирующего контура органами растений. Примером абсолютно истинного  специалитета (истинность равна 1) можно считать накипной лишайник Rhizocarpon geographicum (L.) DC.:

IMG_1332

 

Большинство специалитетов имеет значительно меньшую истинность.  Так расчётная истинность еловых специалитетов на Северо-Западе России составляет в среднем 0,001-0,003.

Специалитеты объединяются в группы. Группы — это комплекс специалитетов в границах мажорирующего контура доминантного специалитета. Во многом этот класс напоминает эколого-ценотическую группу или тип леса в лесной типологии (Федорчук и др., 2005). В естественных лесах Северо-Запада России встречаются лишайниковая, кустарничковая, мелкотравная, неморальная, сфагновая, багульниковая, долгомошная, болотнотравяная, таволжная и приручейная группы (Голубев, 2012). Луга представлены насыпной, влажнозлаковой, злаковой и травяной группами (на основе данных: Нешатаев, Егоров, 2006). Поскольку мажорирующие контуры специалитетов (в том числе доминирующих) пересекаются, зачастую наблюдается пересечение групп.

Группы формируют формы. Формы — комплекс групп, занимающих в пространстве объем, ограниченный мажорирующим контуром групп с единой жизненной формой доминантов. Выделены древесные, кустарниковые, кустарничковые, травяные, моховые, лишайниковые, водорослевые, лиановые, подушковые и гетеротрофные формы.

Если особь вида s одновидового сообщества S={s1, s2, s3,…, sn} представить как множество клеток с параметрами: длина, ширина, высота, время s={(x1, y1, z1, t1) , (x2, y2, z2, t2),…, (xn, yn, zn, tn)}, то понятие специалитета можно формализовать как множество Sp={s1, s2, s3,…, sn}, такое, что:

Дальше в исходном тексте шли формулы, а так-же формализация понятий группы и формы. Но за давностью лет информация проебалась. Если не ошибаюсь, полный текст опубликован в сборнике материалов конференции «Математическое моделирование в экологии», что проходила в Пущино между 2010 и 2014 годами. Там же есть и недостающие формулы. Я их здесь публиковать не буду, поскольку, во-первых, у меня их почему-то нет под рукой, во-вторых, я сейчас еду в уазике и по тряской дороге пью пиво, а в-третьих, хуйню эту все-равно никто читать не будет, так что и так сойдет.