Как политика на растительность повлияла

Существует только один тип растительности, толкование которого не вызывает споров — это растительность на голове. Остальные служат поводом если не для критики, то во всяком случае для нескончаемого геоботанического ворчания. Все потому, что ботаника наука эмпирическая: тут не до конца понятно, что такое растение вообще, а уж совокупность растений каждый описывает в зависимости от жизненного опыта.

Термин «растительность» относительно молод, популярен и часто спекулятивен. Иногда так называют даже флору, что совершенно неправильно. Флора — это перечень растений конкретного местообитания, растительность же включает и флору, и биометрию, и динамику, и ценотические связи. Понятие сложное, а потому, прежде чем говорить с геоботаником, стоит узнать какой из научных школ он симпатизирует.

Школ много: упсальская, франко-швейцарская, англо-американская, московская, ленинградская и другие. Если вникать в нюансы, то список получается длинный. Но принципиально они представляют три группы: условные американская, европейская и ленинградская (она же эколого-доминантная).

Самая понятная — американская. Ее суть в следующем: нам пофиг, что такое растительность, мы изучаем как она изменяется во времени. Сторонники этой школы без конца ищут у растительности климакс, споря о его единстве, альтернативности и безысходности.

Специфику ленинградской школы великий русский геоботаник Владимир Николаевич Сукачев точнее всего выразил во фразе: «Растительное сообщество — есть понятие чисто конкретное». Растительность в локальном месте — это не просто набор растений, а некий «сверхорганизм». Утрированно, можно привести аналогию муравейника, называть который «муравьиным домом» стыдно даже в книжках для дошколят. Ценотические связи (взаимоотношения растений) чрезвычайно важный элемент растительного сообщества, который определяет отличие растительности от флоры. Во многом благодаря Сукачеву у геоботаники появилось второе имя — фитосоциология или социология растений. Правда, лет пятьдесят назад геоботаники решили избежать обвинений в антропоцентризме и переименовали свою науку в фитоценологию.

Сторонники ленинградской школы выделяют растительность на основе доминантов (преобладающие виды) и эдификаторов (виды, создающие условия среды), что чаще всего одно и то-же. В их понимании растительные сообщества имеют четкие, ну или не очень четкие, но границы.

Европейская школа чаще всего ассоциируется с франко-швейцарской, а потому ее называют браун-бланкистской (в честь ботаника Жозиаса Браун-Бланке). К ней вполне можно отнести московскую и упсальскую геоботанические школы. Европейская школа соглашается с ленинградской в значимости ценотических связей, но никакого сверхорганизма в растительности не признает. Проще говоря: что выросло, то выросло. Почему сообщества растений в разных местах имеют сходный флористический состав? Да потому, что в этих местах другие растения не выживут. А может и выжили бы, да откуда семена возьмутся? Растительное сообщество — это когда разных растений случайно намешалось и что прижилось, то и растет. Границ у растительности никаких нет, все нечетко перетекает из одного в другое. А если границы есть, то обусловлены они либо абиотическими причинами, либо вы просто мало описаний сделали. Более того, это признала вся прогрессивная наука и только ботаник по имени Дю Ри никак не угомонится.

В европейской школе растительные сообщества выделяют на основе постоянно встречающихся видов и не важно, являются они доминантами или нет. У ботаника ленинградской школы ельник и сосняк — это два совершенно разных сообщества, а ельник черничный и ельник кисличный довольно близки между собой. У браун-бланкистов ельник и сосняк — это близкие сообщества, если под пологом вы найдете одинаковые растения.

Сторонники ленинградской школы критикуют браун-бланкистов, говоря, что их произвольное разделение растительности подобно тому «как хозяйка режет сыр». В ответ на это, браун-бланкисты говорят, что пришло время навсегда отказаться от архаичной «еловой догмы»

Откуда же такое разделение? Да все потому, что основоположники ленинградской школы, начиная с Каяндера вели исследования главным образом в лесах, где эколого-доминантный подход наиболее удобен и очевиден. Европейские же ботаники делали упор на изучение лугов, где редко можно выделить один доминантный вид. В окруженной лесами Москве огромную роль среди геоботаников играл Леонтий Григорьевич Раменский, который с 1928 года работал в… институте луговой и болотной культуры.

Так бы и продолжался этот нескончаемый спор, но вмешалась большая политика. Идеи Браун-Бланке впервые начали применять в Советском Союзе еще в семидесятых годах. Тогда на фоне мощнейшей ленинградской школы они казались чем-то диковинным, но хорошо зарекомендовали себя при описании безлесных территорий. А когда в девяностых все посыпалось, начались любопытные процессы.

С одной стороны, оказалось, что лесное хозяйство — это убыточная отрасль. Причем остается таковой до сих пор. Точнее сказать, оставалась — в 2007 году был принят Лесной кодекс в котором ни разу не упомянуто словосочетание «лесное хозяйство». Осталась только лесная промышленность, то есть лес сейчас это не «сверхорганизм» и не случайное сочетание растений, а прежде всего месторождение досок. Идея о том, что лесник как парикмахер, должен думать не о том, что состриг, а о том, что осталось, верна, но юридически закреплена лишь в виде благих намерений о «долговременном» и «неистощимом» лесопользовании. В таких условиях говорить о финансировании исследований лесной растительности не приходится, а значит и научная школа представлена старыми геоботаниками и черт знает кем на хоз-договорных подрядах.

С другой стороны, после распада Союза появилась замечательная возможность международного сотрудничества и участия в совместных грантах. Но для этого необходимо привести собственные методы в соответствие с европейскими. Здесь и оказалось, что хочешь не хочешь, а систему Браун-Бланке использовать придется. Эколого-доминантный подход весьма хорош, но довольно сложно применять его даже в таком проекте как составление карты циркумбореальной растительности, не говоря уже о «Karte der natürlichen Vegetation Europas», составленной под руководством Удо Бона еще в 2004 году.


Сегодня большинство практикующих геоботаников в России либо полностью перешли на классификацию Браун-Бланке, либо вынуждены периодически к ней обращаться. Ленинградская школа кажется чем-то устаревшим, особенно в кругу фанатов Бориса Михайловича Миркина. Спасает эколого-доминантный подход только два обстоятельства. Во-первых, русская бюрократия посильнее ветреных научных воззрений. Распад страны еще не повод менять нормативы и стандарты. Мы не задумываемся, но всякая работа в лесу по-прежнему основана на трудах Морозова, Сукачева, Каяндера, Орлова, Арнольда и других натуралистов.

Во-вторых, эколого-доминантный подход в сообществах с явными эдификаторами действительно себя оправдывает, так почему бы его не использовать? Еще Мао Цзэдун говорил: «Пусть расцветают все способы классификации растительности». Тем более, что в свете последних открытий в топологии, многие разногласия между школами теряют всякий смысл. Взять ту же проблему дискретности/континуальности растительного покрова. Сколько было споров по этому поводу, а ларчик просто открывался: не надо применять геометрию Эвклида к объектам, для которых она не предназначена.

Едва ли стоит сейчас представлять растительные сообщества как «сверхорганизм», но и говорить о совершенной случайности комбинаций растений тоже довольно странно: все-таки ценотические связи часто играют в сообществах не меньшую роль, чем почвенные и климатические факторы. Достаточно вспомнить хотя-бы легендарный «Эффект группы у растений» Юрия Владимировича Титова. Ботаника — наука, увы, эмпирическая и склонна истолковывать увиденное в рамках текущей парадигмы.

Чем бы ни оказались растительные сообщества в действительности, главное что-бы это как можно меньше зависело от политики, моды и грантовых претензий. Иначе исследовать, использовать и охранять мы будем не реальность, а жизненный опыт предшественников.

Контурная карта растительности

Рассказ о геоботанической контурной карте с недавней конференции «Открытые геотехнологии«. Выступления других спикеров доступны на канале конференции.

Контурная карта растительности

Создание крупномасштабной контурной карты растительности

Опыт последних десятилетий явно показывает, что отечественное геоботаническое картографирование есть абсолютно дегенеративное явление в науке как в плане результата, так и в наборе применяемых методов. Тем не менее, востребованность в картах растительности до сих пор присутствует, а значит вопрос отработки технологии составления геоботанических карт по прежнему сохраняет актуальность.

В большинстве случаев, при составления карты растительности необходимы полевые работы для уточнения и верификации данных. К сожалению, большинство исследователей слишком переоценивают значение полевых работ, считая, что это самый сложный, ответственный и дорогой этап. В результате из производственного цикла почти исчезают подготовительные работы, а камеральная обработка ведется по остаточному принципу. Такой подход обесценивает результаты даже самой затратной экспедиции. Во многом это связано с современной практикой договоров, которые заключаются в сжатые сроки на минимальные суммы с условием немедленного начала полевых работ. Срок составления крупно- и среднемасштабной карты растительности региона не может быть менее трех лет, это обусловлено самой спецификой тематического картографирования. Первый год уходит на выявление и классификацию различных типов растительности, второй на собственно сбор геоданных, дешифрирование и создание контуровки. Лишь к концу второго — третьего года можно собрать достаточный набор качественных данных для составления объективной карты растительного покрова.

Обычно таких временных и финансовых ресурсов нет, поэтому для составления карты растительности приходится использовать технологию «Похуй, пляшем», суть которой заключается в одновременном сборе геоданных, создании классификатора объектов и переносе подготовительных работ на постполевое время.

Есть мнение, что для сбора геоданных и создания карты достаточно спутникового снимка и узких специалистов по каждому типу растительности. Увы, при таком подходе обычно ничего сделать не удается. Все дело в том, что крупномасштабные карты почти невозможно изготовить без использования данных дистанционного зондирования, но эти данные требуют обработки и генерализации, которые выполняет картограф. Более того, при работе в указанных условиях, эти процедуры неизбежно должны быть полностью автоматизированы, иначе вы просто не успеете завершить работу. Следует помнить и о принципе повторимости научного эксперимента. Всякий человек, используя ваш метод, должен получить аналогичный итог. Если же контуры отрисованы вручную, то повторить эту работу не сможет даже сам автор, что делает карту скорее произведением искусства, чем научным результатом.

Рассмотрим процесс создания генерализованной контурной карты растительности 13-14 зумов (1:25 000 — 1:50 000) долин рек Сарм-Сабун (иногда встречается написание Сармсабун) и Глубокий Сабун Ханты-Мансийского автономного округа. Сливаясь эти реки образуют правый приток Ваха — реку Сабун:
Слияние Сарм-Сабуна и Глубокого Сабуна

Логично начать картографическую работу с инвентаризации доступных данных. Для каждого региона этот список может быть разный, но стандартно в него входят Ландсаты разных поколений с их производными. Часто к ним примыкают цифровые модели местности, но в моем случае использовать их почти лишено смыла: SRTM до этих широт не доходит, ASTER Alos представлен только фрагментарно, а классический астер напичкан артефактами. Кроме того, DTM-фильтр при создании карт растительности таежных равнин работает плохо. Всевозможные модисы и сентинели меня не устраивали по разным причинам (качество, покрытие, получение, алгоритмы обработки и сравнения и др.). Об использовании карт OSM и генштаба не может быть и речи. У первых в этом месте вакуум, а вторые мало того, что устарели, так еще и неизвестно откуда взяты. Украденные карты государственной топографии хороши для навигации на месте (особенно это касается карт ГГЦ), но использование таких материалов в своих проектах — абсолютный признак профнепригодности. Лучше всего это иллюстрирует конференция «Опыт использования карт Генерального Штаба», проводимая обществом безруких картографов Саудовской Аравии. Данные тематического картографирования, равно как и данные AVHRR в список исходных материалов так же не попали, по причине того, что их использование более оправдано для анализа растительности и финального уточнению карты, чем для первоначального выделения границ растительности.

В итоге для создания первичного контура выбраны сцены Landsat-8 за 15 июля и 12 мая 2018 года и растр сомкнутости древостоя («Treecover») проекта Global Forest Change. Кроме того, растр водной поверхности GFC использован для быстрого создания слоя водоемов. Дополнительные ландсаты (Landsat-ETM за 30 июля 2000 года, Landsat-MSS за 30 июня 1983 года и Landsat-MSS за 04 мая 1983 года) в создании контурной карты не использованы, но по ним производится расчет зональной статистики для последующего дешифрирования и уточнения границ растительных сообществ.

Уже из списка источников видно, что для создания контурной карты я применяю фенологический подход, который заключается в том, что вы создаете контуры не на основе одного растра, а на основе композита, образованного слиянием зимних и летних снимков. «Зимний» снимок сделан 12 мая, но учитывая позднюю снежную зиму этого года и климат региона — это нормально.

В начале из каналов летнего и зимнего снимков создадим растры вегетационного индекса. Вегетационный индекс — NDVI (Normalized Difference Vegetation Index) показывает количество фотосинтетически активной биомассы. Обычно его не рекомендуют применять для снимков зимнего периода, но для нашей задачи требуется именно это. Расчет ведется с помощью растрового калькулятора QGis по формуле:

NDVI = (NIR-RED)/(NIR+RED),

где NIR и RED — инфракрасный и красный каналы каждого снимка соответственно.

Значения каждого индекса увеличиваются по формуле 100*(значение NDVI + 1). Прибавление единицы избавляет от отрицательных значений. Умножать в сто раз необязательно, это сделано исключительно ради субъективного удобства. Такое изменение индекса не влияет на конечный результат.

Рассчитав вегетационные индексы, логично использовать ту же формулу для оценки фенологических изменений. Поскольку общепринятого наименования у данной величины нет, назовем ее нормализированным фенологическим индексом — NDFI. Соответственно, расчет NDFI производится по формуле:

NDFI = (NDVIлето-NDVIзима)/(NDVIлето+NDVIзима):

Растр NDFI (минимальные фенологические изменения - красным)

Растр NDFI (минимальные фенологические изменения — красным)

Приступим к обработке растра сомкнутости лесной растительности GFC. Исходный слой GFC имеет пустые значения пикселей на безлесных участках. Использование такого растра приведет к разбалансировке цветов на финальном композите, поэтому требуется заполнить пустоты нулевыми значениями.

Может показаться ошибочным использование GFC совместно с ландсатами текущего года, поскольку слой «treecover» GFC актуален на 2000 год. На самом деле такое совмещение дает дополнительные возможности, поскольку при совмещении растров проявятся контуры горельников и ветровалов 2000-2018 годов.

После описанных процедур мы обладаем тремя растрами, которые будем использовать для создания композита: летние значения NDVI (количество зеленой биомассы в июле 2018 года), NDFI (величина фенологических изменений с мая по июль 2018 года) и treecover (сомкнутость леса на момент 2000 года). Сведем все это в единый RGB-композит, установив красный канал для NDFI, зеленый канал для NDVI, синий канал для treecover. Во всех каналах улучшим контраст растяжением от минимального до максимального значения. В QGis это можно сделать автоматически, поэтому нет нужды нормализовать растры к диапазону 0-255:
RGB-композит

На этом этапе переходим к работе с векторными данными. Если вы работаете с небольшим регионом, то описанные действия можно пропустить. Однако следует помнить, что в дальнейшем нам предстоит фильтровать растр и строить по нему изолинии, что является очень затратной процедурой по времени и машинным ресурсам.

Создадим линейный слой реки. Лучше всего сделать это в JOSMe по слою Bing-а, после чего экспортировать данные в QGis. К сожалению, это возможно лишь при постоянном наличии хорошего интернет-соединения. Если с таковым проблемы, то можно использовать панхроматический канал Landsat с разрешением 15 метров на пиксель (у Landsat-8 это восьмой канал). На основе осевой линии реки строим буфер, в пределах которого планируется создание контурной карты (два километра в обе стороны от оси реки):
Осевая линия реки и буфер-граница карты

Далее обрезаете композит по контуру буфера:
RGB-композит обрезанный по контуру буфера

Это прообраз нашей будущей контурной карты. Мы не можем работать с тремя слоями RGB-композита одновременно, поэтому переводим все в восьмибитное изображение 256 цветов. Количество цветов можно сократить если вы уверены, что это не отобразиться на качестве результата. Это существенно ускорит работу, но в моем случае приходится идти по самому долгому пути:
PCT-композит

Если достаточно очень грубой контуровки, то можно переходить непосредственно к фильтрации полученного растра. Мне такой подход показался совершенно неудовлетворительным — контуры были либо излишне детальными, либо очень приблизительными.

Необходимость фильтрации растра обусловлена тем, что пиксели имеют квадратную форму, а потому изолинии, построенные на основе них будут иметь очень ломаный и рваный вид. Для наглядности, вот пример изолиний с исходного (красные линии) и отфильтрованного (черные линии) растра из соответствующей статьи:

Чем сильнее фильтрация (речь о простом фильтре), тем более плавные изолинии вы получите в итоге. Проблема в том, что сильные коэффициенты фильтрации усредняют значения растра. В результате линейно вытянутый объект превращается в овальное пятно, контур которого абсолютно не соответствует реальности.

В ходе многочисленных экспериментов решение проблемы было найдено. К сожалению, оно не является тривиальным и не встречается в известной мне литературе по геоинформатике, поэтому для обозначения процедуры я использую понятие «Векторная фильтрация». Суть метода заключается в том, что исходный растр векторизируется. При этом соседние пиксели одного значения преобразуются в единый полигон:
Векторизация растра

Для каждого полигона рассчитывается центроид:
Центроиды полигонов векторизированного растра

После чего слой центроидов интерполируется обратно в растр:
Интерполяция центроидов векторизированного растра

Таким образом, технологию векторной фильтрации можно описать как интерполяцию центроидов векторизированного растра. Отфильтровав этот слой мы получаем плавные изолинии, которые по форме близки к естественным границам:
Изолинии

Необходимо преобразовать изолинии в полигоны, поэтому для сохранности топологии перед началом процедуры следует провести генерализацию, убрав изолинии малой протяженности (в моем случае менее двухсот метров). Кроме того, следует определиться, какие изолинии наиболее соответствуют естественным границам растительности. Сделать это можно сверяясь с высокодетальными снимками (что, правда не совсем законно даже в случае с Bing-ом):
Изолинии на снимке Bing

Для облегчения процедуры советую посмотреть гистограмму распределения количества значений и попробовать разные классификации (по стандартному отклонению, по равным интервалам, по границам Дженкса и др.). Естественно, к этому моменту вы должны представлять, хотя бы по литературным данным, какие типы растительного покрова разделяют ваши изолинии.
Распределение цветов

Такой анализ требует в несколько раз больше изолиний, чем вы планируете получить типов контуров на карте. После того, как наиболее достоверные линии найдены, сохраняете их в отдельный слой и приступаете к созданию полигонов. К великому неудовольствию это тоже не сводится к элементарному действию, поскольку процедура в SAGA «Polygon-line intersect» выдает совершенно негодный результат. Приходиться преобразовывать изолинии в полигоны, после чего чередованием GDAL-овских алгоритмов разности и объединения сводить все в единый слой.

Что-бы отобразить водоемы используем слой-маску GFC. Ее так же отфильтруем, и создадим изолинии, которые преобразуем в полигоны. Векторная фильтрация для таких растров, к сожалению, не имеет смысла, но другого быстрого способа получить слой водоемов у нас просто нет.

В конечном итоге, экспортируем все в TileMill или MapBox Studio (смотря на стоимость вашего интернета), настраиваем стиль и нарезаем карту на тайлы:
Карта в TileMill

Все. Теперь можно подключить mb-тайлы к лефлету или tms-серверу, расставить предварительные точки описаний, кешировать все в навигатор и выезжать в поле.

Само-собой, это не финальная карта. Не используя субъективную ручную отрисовку мы в короткое время получили лишь ее прообраз. Границы могут уточняться, изменяться. Какие-то контуры могут быть объединены, какие-то разбиты. Для контуров подсчитывается зональная статистика, границы сравниваются с геологическими, геоморфологическими и другими данными. Сами контуры еще следует наполнить физическим смыслом. Но это уже предмет для конкретного обсуждения и калибровки описанной картографической технологии.




Линия электрических передач

Новую экспедицию отменить нельзя

Жеглов дело говорит: наказания без вины не бывает. Но порой, все взаимосвязано настолько, что нет ни малейшего смысла разбирать причинно-следственные хитросплетения. Тут уж нельзя не вспомнить его подследственного Груздева, что цитировал на фоне стены, окрашенной в цвета Зеленого Слоника конфуцианское: «Очень трудно искать в темной комнате черную кошку, особенно если там ее нет».

К чему это я? Оставим клинические случаи специалистам в области психиатрии. Вне прецедентов для их компетенции, едва ли разумно подбирать для своих желаний объяснения, удовлетворяющие широкую общественность. Если я хочу что-то написать — я достаю блокнот и пишу. Если я хочу что-то посмотреть — я иду и смотрю. Если я хочу выпить — я наливаю стакан и пью без всякого повода. Потому что любое логическое оправдание своей страсти — это костыль, а «костыли нужны только хромым». Пламя души не требует извинений, жизнь не нуждается в оправдании.

Так какого же хрена, я все размышляю над тем, как объяснить мою новую авантюру? К чему все эти надуманные сопли? Пора добавить в эту жизнь немножко веселья.

Итак, год назад я высказал желание отправиться на лодке по реке Аксай. Чем это закончилось, вы все в большей или меньшей степени знаете. В этой игре пора немного поднять ставки:

Маршрут Чирской географической экспедиции


Да, друзья. В этом году на повестке стоит река Чир. Лет пятнадцать мечтаю на ней побывать, пора уже сбывать эту мечту. Протяженность маршрута 385 км, из которых часть предстоит пройти пешком. Отправка в конце апреля-начале мая, в зависимости от погоды и загруженности транспорта.

Что пользы в таких путешествиях? Не больше чем от наблюдения за формой клювов галапагосских вьюрков. Географию малых мест можно изучить разве что по редким рассказам туристов, рыбаков и местных жителей. Местных жителей еще нужно найти, да и знают они обычно немного. Рыбаков мало интересует то, что не связано непосредственно с ловлей, а туристов часто вообще ничего не интересует. Мы можем от полюса до полюса разглядывать Землю из космоса в видимых и невидимых диапазонах, но никто не знает, как выглядит эта Земля между хуторами Рябухин и Кзыл-Аул. Да что-там Кзыл-Аул — даже о возможности добраться на общественном транспорте до хутора Ботановский не знает ни один из мировых поисковиков.

Одно из самых коварных заблуждений современности — считать, что интернет вобрал в себя всю доступную человечеству информацию. Это не соответствует действительности даже на сотую долю процента. Вы, конечно, можете ознакомится с наиболее популярными фактами, но суть всех вещей все-равно останется для вас неразгаданной, ибо самые ценны пласты этого месторождения истины кроются не в сети, а в реальной жизни.

Скажу более того: мы вступаем в эпоху малых географических открытий. Воодушевленные удобством цифровых технологий, мы напрочь забыли, что любая технология ограничена и налагает разного рода издержки. В годы, когда на дискету умещалось несколько фотоальбомов эти издержки были столь незначительны, что вошло в привычку их игнорировать, но времена меняются и с каждым годом все чаще происходят ситуации, когда поиск в огромном объеме информации обходится дороже повторного исследования. Как ни печально, но терабайты информации тоже подвержены усушке, утруске и бою при перевозке. А значит пора вновь спускать со стапелей Бигль и Писарро.

мой бигль

Что такое река Чир? Согласно «Экологическому вестнику Дона» за 2015 год — Чир это водный поток, несущий у Обливского гидропоста 356 миллионов кубических метров воды в год со скоростью 11.3 кубометра в секунду. Это чуть больше половины (61%) среднемноголетних значений.  Правый приток Дона, разрезающий южные черноземы, темно-каштановые почвы и глауконитовые пески. В верховьях представлен цепочкой озер и водохранилищ, связанных пересыхающим руслом с периодически встречающимися порогами.

Река Чир Автор фото - Виктор Римчук

Автор фото — Виктор Римчук

В низовьях наполняется до широкой (более 50 м) по степным меркам реки, впадая в Цимлянское водохранилище.

При движении от истока к устью, полоса, шириной три километра по обе стороны от русла пересекает населенные пункты: Ботановский, Ильичевка, Верхнечирский, Большенаполовский, Ейский, Козырек, Разметный, Грачев, Лиховидовский, Рогожкин, Климовка, Каргинская, Латышев, Грушинский, Вислогузов, Попов, Коньков, Боковская, Дуленков, Земцов, Евлантьев, Свиридов, Краснокутская, Каменка, Илларионов, Фомин, Хохлачев, Пичугин, Новомосковка, Демин, Ставиднянский, Чистяково, Советская, Русаков, Русская, Новорябухин, Аржановский, Чирский, Рябухин, Малые Озера, Осиновский, Варламов, Усть-Грязновский, Синяпкин, Александровский, Артемов, Сосновый, Караичев, Киреев, Паршин, Попов, Солонецкий, Глухомановский, Ярской, Паршино, Лобачев, Лагутин, Рябовский, Большетерновой, Малотерновой, Средний Чир, Синяпкинский, Обливская, Кзыл-Аул, Сеньшин, Ковыленский, Секретев, Стародербеновский, Новодербеновский, Дубовой, Чувилевский, Стариковский, Нижнеосиновский, Суровкино, Свиридовский, Островской, Ближнеосиновский, Ближнемельничный, Новомаксимовский, Верхнечирский.

Судоходного значения река не имеет, впрочем — посмотрим.

Основное внимание, я конечно же уделю пойменной растительности. Большой интерес вызывает связь древесного прироста и гидрологического режима. Гидропостов на каждом километре не расставишь, а растительность, даже в степной зоне встречается достаточно регулярно. Отчего-бы не сравнить, с какой скоростью росли деревья на разных участках реки за последние двадцать-тридцать лет? Насколько тесна связь между уровнем воды и приростом пойменный ивняков и тополевников? Это тем более интересно, что в последние годы с водой на Дону творится странная катастрофическая фигня:

Для такого анализа потребуется в разных местах с помощью возрастного бурава отобрать из деревьев вот такие керны:

После чего подсчитать величину приростов за последние годы, оценить влияние на прирост фитоценотических факторов, сравнить приросты в сходных местообитаниях на разных участках реки (здесь пригодятся методы экологического шкалирования) и проверить наличие достоверной связи между приростами и данными по объему стока в реке.

Попутно я обязательно посмотрю на сохранность одной из крупнейших лесных полос «Пенза-Каменск», созданную по проекту «сталинского плана преобразования природы». Сейчас о состоянии таких объектов нет практически никакой информации, хотя в свое время им посвящали целые монографии:

Лесополоса Пенза-Каменск

В последнем официальном экологическом отчете фигурировала информация о том, что в целях улучшения экологического состояния расчищено аж 650 м русла реки Чир и убрано целых сто кубических метров мусора. В связи с этим, весьма любопытно будет взглянуть на состояние местообитаний редких и охраняемых видов растений и животных.

В качестве побочного результата путешествия можно будет получить уточненную границу Ростовской и Волгоградской областей, которая проходит по реке Чир. Юридического значения в этих данных не будет, но зато будет с чем сравнить топорную кадастровую карту:

Публичная кадастровая карта

Ну и самое главное. Я владею небольшой компанией, которая занимается сбором и анализом географических данных. Судя по бухгалтерскому балансу, предприниматель из меня так себе, но все-же оплачивать исследования из собственного кармана проще, честнее, а главное удобнее, чем бесконечно заполнять невнятные заявки на гранты в каком-нибудь НИИ. Основные расходы понесет моя лаборатория, но я буду чрезвычайно раз любой поддержке. Во-первых, из чисто материальных соображений, а во-вторых, это даст мне дополнительную ответственность, поскольку отчитываться перед другими людьми всегда сложнее чем перед собой. Кроме того, осознание, того, что в труде заинтересован кто-то, помимо тебя, приносит удовлетворение гораздо более высокого порядка.

В качестве благодарности постараюсь отправить вам из путешествия открытку, выслать после обработки керн на сувенир или отдам бесплатно/по себестоимости свою научно-антихудожественную книжку для взрослых, которую я таки предоставлю в печать в ближайшие пару месяцев. Такой вот научный краудфандинг.

Если вы представляете коммерческую компанию, то велика вероятность, что мы найдем отдельные взаимовыгодные формы сотрудничества.

Само-собой, все полученные результаты будут открыты, использовать их сможет любой желающий. Я, как обычно, не против компании людей, стойких к бытовым невзгодам, адекватным чувством юмора и космическим терпением к вредным попутчикам. Как сказал бы тот же жегловский Груздев: «Путь не делает человека великим, но человек может сделать великим путь». Впрочем, это уже какая-то пафосная философия.

К слову об источниках русловой динамики степных рек с малым течением

В наш просвещенный век каждый знает о таком явлении, как меандрирование рек. Чем сильнее изгибается русло, тем выше разность скоростей течения воды у берегов. По внешнему радиусу водный поток движется быстрее, соответственно там быстрее проистекают процессы эрозии еще более изгибая направление русла и повышая разность скоростей водного потока. Это, если хотите, прекрасный пример системы с положительной обратной связью.

Принято считать, что самой наглядной демонстрацией меандр являются космические снимки. Например, как вот этот мапбоксовский снимок реки Аксай:
aksaj

В действительности, ничего не может продемонстрировать суть меандрирования реки лучше, чем сплав по ней в солнечную погоду. Вот солнце слева от вас, а нет уже справа, нет, опять слева, нет сзади, да нет же, справа, хотя постойте, вот прямо по курсу светит… Сплавляясь весной по этой реке, я не мог не обратить свое внимание на особенности русловой динамики и даже имею кое-что сообщить вам по этому поводу.

Гидрологическая наука в лице А. Ю. Сидорчука (статья «Главные формы речных русел: меандры и разветвления«) утверждает, что: «Первоначальный изгиб русла появляется за счет гидродинамической неустойчивости прямолинейного потока». Утверждение настолько тривиальное, что создается ощущение, будто автор пытается уйти от вопроса первопричины образования изгиба водотока. В чем механика процесса зарождения изгиба, господа? Не развития, подчеркиваю, а именно изгиба? Если принять за истину, что в основе всего стоит «гидродинамическая неустойчивость», то следует признать, что такой неустойчивости присуще странное свойство сохранения ассиметричной структуры на время, достаточное, для появления разности скоростей течения, а это согласитесь, едва ли возможно.

Конечно-же, причины зарождения изгиба русла кроются не в самом водном потоке, но в связи водного потока и его русла. Неоднородности русла влияют на неоднородность потока и наоборот — это неразрывное целое. И с этой точки зрения прямолинейное русло есть система, напряженность которой прямо пропорциональна длине русла. В какой-то момент напряженность достигает максимума и линейная динамика сменяется хаотической в лучших традициях теории катастроф Рене Тома. В это сингулярное время, поводом к началу изгиба реки может быть все что угодно.

Но, хватит теории. Сплавляясь по Аксаю, я с интересом отметил, что во многих случаях, причиной появления разности скоростей водного потока у противоположных берегов являются упавшие стволы деревьев:
img_3042

Растущие по берегам деревья (большей частью тополя) падают неизменно в воду, поскольку крона их неравномерно развита и значительно более массивна с открытой стороны, обращенной к воде. Упав, дерево может достаточно долго оставаться прикрепленным корнями к субстрату, при этом замедляя течение и аккумулируя перед собой плывущие ветви и водоросли.
img_3039

Накопленный, благодаря колебаниям уровня воды ил, вкупе с разлагающимся субстратом древесины создает достаточные условия для произрастания трав, а в редких случаях даже кустарников:
img_3044

Но что еще интереснее — на реках с малым течением, коим является и Мертвый Аксай в его верховьях, основной причиной падения деревьев в воду становится не подмывание почвы, хотя таковое тоже имеет место, а банальный ветровал. В связи с этим, наиболее сильная дифференциация скорости водного потока происходит на участках реки с узкими береговыми полосами леса или множеством отдельно стоящих деревьев. Большие лесные массивы вдоль берегов служат достаточным барьером против ветра — плыть по этим участкам почти не составляет труда: топляков и коряг весьма немного. Участки же с редкостойными насаждениями по берегам исключительно труднопроходимы для лодки и порой представляют серьезную опасность для экспедитора.

Это наблюдение веско показывает, что зная инициатор какого-либо естественного процесса и руководствуясь разумным представлением о механике природных явлений мы с успехом можем решать исключительно практические проблемы, к коим несомненно относится и прокладка экспедиционных маршрутов.

Картографическая парафилия

Картографическая парафилия

В 2009 году мы ехали в экспедицию по Мурманской области с неудобным рулоном семьсот двадцатой баннерной ткани, на которой была отпечатана карта растительности восточной части Лапландского заповедника. Карта эта направлялась в подарок администрации заповедника, она беспрерывно падала и укатывалась по вагону, мешая спокойно пить пиво в плацкарте. К великому счастью мы избавились от нее сразу по прибытию в Мончегорск. Если я правильно понимаю суть российских государственных организаций — эта карта до сих пор хранится в администрации заповедника. В свернутом виде, конечно-же.

Над изготовлением этой карты мы трудились около месяца. Она впитала в себя всю звучащую фоном дискографию «Сектора Газа», сборник сочинений Альфреда Шнитке и песню Александра Харчикова «Настоящий коммунист перед Родиною чист».

Но самое главное, карта сделана в фотошопе. От первого до последнего пикселя. Не задавайте глупого вопроса «зачем?». Каждый человек имеет в жизни право на легкую профессиональную девиацию. Зато получившийся результат настолько чудовищен, что вполне может сойти за новомодное авторское решение.

Я хранил в себе память об этом позоре долгих восемь лет. И хранил бы еще столько-же если-бы не нашел старый диск с, казалось, навсегда утерянными файлами. Так что держитесь, еще не такое будет.

Рубкология

Весь нынешний август я шароебился по разным кустам занимаясь оценкой успешности лесовозобновления на сплошных вырубках юго-запада Ленинградской области. Суть работы сводилась к следующему: я вылезал из теплой машины под бесконечный дождь, цеплял к рюкзаку на манер навесного оборудования трактора обычную штыковую лопату, в «ливчик» комбинезона засовывал планшетку с бланками, сжимал посильнее рукоять здоровенного тесака для рубки медвежьих бошек и в позе супермена из армии Батьки Махно погружался в дремучий кустарник, где писал разную технологическую ебанину и вонзал в раскисшую землю сотни палок с красными лентами.
102_4624

К большому сожалению, заказчик этого безумия находился в стадии перманентного параноидального прихода и всячески настаивал на конфеденциальности методов и результатов работ. Что-ж, не будем посягать на его законное право страдать херней. К тому же, говоря по правде, интересного там мало: банальные учеты и типовые анализы: какой-нибудь дискретный анализ и среднее с вариацией. Другим словом, беспросветная тоска. Я же хочу рассказать вам о настоящем веселье.

Итак, друзья, тушите свет, зажигайте свечи, разбрасывайте по полу каштаны. Наливайте себе стакан до краев и располагайтесь удобнее, ибо во многом знании много печали, но памятуя про in vino veritas едва ли найдется тот, кто не заметит очевидного парадокса в измышлениях старинных мудрецов. Однажды придет и мой Мелет, сын Мелета, пифеец, но пока, дрожание рук походит на кривую судьбы Агриппины младшей, между Нероном и Тиберием велик соблазн немного повертеть на граненом стакане кровавый сапожок. Веселье, друзья, конечно же веселье служит нам путеводной нитью этого вечера! Все начинается с того, что раз в полторы недели вы до утра обрабатываете вымокшие бланки с кровавыми пятнами. Пеленг такой-то, широта такая-то, долгота такая-то, фото номер N. Три березы, две елки ноль пять, елка полтора, осина, две рябины, сосна ноль пять. Пишите, чертите, вслушиваетесь в свой голос с диктофона, просматриваете отснятые файлы. Что-бы не заснуть, выходите на улицу покурить и вновь возвращаетесь. Веселитесь изо всех сил.

102_4609

А через несколько часов, едва небо начнет светлеть, двери электрички закрываются и вы наслаждаетесь красотой и величием заоконных пейзажей:

102_3538
Чем дальше, тем пейзажи все красивее и величественнее
102_3523
И конечно-же, все веселее и веселее
102_3571

Но все проходит, стоит лишь выйти на пробу. Встанешь на первую вешку, оглянешь взором предстоящий фронт, сплюнешь и произнесешь благословенное «ёб твою мать». А из динамика телефона тебе отвечает лектор Петухов. «Давайте начнем!»: говорит он. А действительно, давайте начнем! И с этими словами ебнешь свою профилактическую соточку, затянешься поглубже чем бог послал и выпуская дым, начинаешь орудовать тесаком, вязать ленты, писать и бесконечно фотографировать.

102_4755

Прежде чем вы решитесь ввязаться в это дело, нужно понимать куда именно вам предстоит ехать. Как найти вырубки нужного типа леса, возраста, площади и транспортной доступности? Если вы сможете найти где-то карту с такими данными — честь вам и хвала. Но практика показывает, что самые ценные инструменты, для изготовления которых отводятся месяцы предполевых работ всегда приходится собирать в последний момент на коленке. Другими словами, нам нужно составить такую карту самому, иначе все у нас пойдет через жопу. Погнали?!

Карта рубок. Что есть рубки с точки зрения дешифрирования? правильно, рубки есть видоизмененный лес. Значит не ебем себе мозг, а прямо так, английским по белому пишем в поисковой строке браузера: «forest change map». По первой же ссылке попадаем на известный проект Global Forest Change:

111

Классная штука этот GFC. Спецы из Мэрилендского университета, Гугла и Геологической службы США, обработав огромное количество ландсатных снимков, выдали в качестве результата данные по изменению лесного покрова за период с 2000 по 2012 гг. Это то что нам надо, скачиваем данные на нужный нам регион в формате GeoTiff.

Теперь этот слой нужно разнести по типу леса, возрасту, площади и транспортной доступности. Сразу скажу, что первое — больше из области фантастики, ибо до тех пор, пока мы используем в качестве лесной типологии псевдонаучные фантазии времен раннего палеолита, никакой хитрый алгоритм применить не удастся. Да в этом и нет особой нужды, ибо как вы понимаете, основная доля всех рубок представляют собой кисличники, реже свежие черничники. Я бы на месте лесозаготовителей тоже всякого рода долгомошники вертел на харвестере, ибо рубль выберешь, рубль двадцать в гать утопишь.

102_4492

Но зато разбиение данных по остальным параметрам уже дело техники. Для начала векторизуем наш растр в QGis:

222

Из производного шейпа аттрибутивной выборкой по возрасту рубки извлекаем новый полигональный слой. Далее, через калькулятор полей считаем площадь каждого полигона, и удаляем слишком крупные и мелкие полигоны. Остается только исключить рубки, находящиеся в самых недоступных ебенях. Но это тоже не космос: скачиваем через overpass дорожную сеть OpenStreetMap, Строим вдоль проезжих дорог буферную область, доступную для пешего подхода и после этого удаляем все полигоны рубок, которые не пересекаются полученным буфером.

Все, слой готов. Экспортируем его в kml и  SAS.Планету, настроив подходящий вид:

333

Основной недостаток такого метода в том, что в выборку попадают рубки вытянутой и неправильной формы, совершенно неудобные для закладки учетных площадок. Кроме того, помимо рубок, встречаются еще естественные усыхания, пожары, ветровалы и подтопления. Последние, благодаря бобрам, особенно часто. Редкостные, скажу я вам, мудаки, эти бобры. Мало того, что эти пидоры столько леса хорошего затопили, так они еще и невкусные как водоросли. Их что жарь, что вари — все какая-то поебень получается.

Загружаем данные в навигатор и вперед — рубить ветки, месить говно и давить фиолетовые грибы

102_3089

Можно ли размещать площадки на волоках и в каналах? С одной стороны это тоже часть территории. С другой стороны, размещение учетных площадок в таких местах вносит не отслеживаемую погрешность. Вопрос можно поставить даже шире: уместно-ли рассматривать общие показатели восстановления для территории с комплексными видами нарушений? Правильно, неуместно. Пасеки — отдельно, волока — отдельно, земля — крестьянам, мудаков — нахуй.

102_4557Существует несколько принципов, которыми следует руководствоваться приступая к любым полевым работам. Конечно-же, следует помнить о нарастании коэффициента обалдевания: с каждым разом вы, вне зависимости от вашей старательности, будете выбирать наиболее легкие для описания площадки. Это неизбежно приводит к систематическому занижению результатов на 5-15%. Избежать этого можно путем формализации процедуры выбора точки описания: например подобно геоботаникам кидать дрын, служащий, после падения, стороной учетной площадки. Можно и протягивать на определенное расстояние рулетку по выбранному пеленгу. Но этот подход работает плохо даже на рубках трехлетней давности

102_3350

Как не вымеряй расстояние на вырубке по рулетке, все равно будет лажа. Либо закрадывается ошибка за счет изгибов рулетки, либо за счет пробики створов колоссально возрастает трудоемкость. Не ебите себе мозг, отмеряйте расстояние шагами, контролируйте себя по навигатору и не забывайте про коэффициент обалдевания.

Любые поточные полевые наблюдения кроют в себе опасность смещения данных. Стоит вам пропустить наблюдение на одной из учетных площадок, как ценность всех дальнейших наблюдений оказывается равной нулю. Но каждый раз заполнять чек-лист слишком затратно по времени. Поэтому мой вам совет: синхронизируйте все что только возможно. И немедленно. Если вы стоите на восьмой учетной плошадке, пусть номер вашей точки в навигаторе будет «508», а номер фотографии «18». Организуйте все так, что-бы пропущенное наблюдение моментально бы искажало конструкцию данных.

Нет ничего более тупого чем бесконечно записывать номера фотографий. Если вы синхронизировали нумерацию наблюдений, то вам стоит записывать только номера фотографий в точках контроля и номера ошибочно сделанных снимков. По завершению цикла наблюдений, просто суммируйте количество фотографий для дополнительной проверки. Ну и конечно же не забывайте про снимки-хуимки.

Очень часто люди не могут отделить фотографии одного ряда наблюдений от другого. Ну а хули, спрашивается вы фотографировали площадки на одной пробе, потом перешли через дорогу и не сделав ни одного лишнего кадра приступили к фотографированию площадок другой пробы? Естественно, потом при сортировке снимков приходится морщить ум и сравнивать время и содержимое кадра. Делайте проще, перед началом каждой пробы делайте несколько снимков-хуимков: фотографируйте какую-нибудь дичайше специфическую ебанину, например свой еблет, или рукав, или бланк с описанием. Помимо упрощения сортировки снимков, это позволит вам получить психоделический набор ебанутых фотографий для плаката «Я в двадцать пятый раз спрашиваю, что это за хуйня?»

hand

Стоит ли говорить о том, что на пробе вы записываете не количественные, а качественные показатели? Правильно не стоит. Потому что любые количественные измерения есть суть более формализованные качественные. И если в одной графе бланка записано «87 берез», а в другой «92 березы», только безумец будет утверждать, что во втором наблюдении на пять берез больше. Разумный человек сразу понимает, что на обоих площадках одинаковое количество подроста, чуть меньше сотни стволиков, но определенно больше полусотни. И во втором наблюдении их может оказаться чуть больше, хотя если подсчитать, может и чуть меньше. «А чего-же не подсчитать их точно?» — спросит какой-нибудь далекий от биометрии человек. А подсчитать их точно невозможно, ибо натуральные числа используемые для счета представляют собой слишком грубый инструмент, не позволяющий описывать переходные состояния. Каждый стволик считается по отдельности, но в какой момент растущий стволик отличается от новой ветви, особенно если речь идет о корневой поросли? Нет, коллеги, натуральный счет тут не подходит, да и действительные числа едва ли применимы. Я уж не говорю о космической сложности таких измерений.

102_4321

Нахрена столько сложностей в подсчете кустов? А сложностей никаких и нет. Рост профессионального геоботаника составляет один метр семьдесят восемь сантиметров. Поэтому для определения количества подроста на гектар, ему достаточно сосчитать количество стволов, на которые он упадет если выпьет на стакан больше положенного и умножить полученный результат на тысячу. Причем, поскольку упасть он может в разные стороны, подсчет стволиков ведется на всей площади круга, радиусом 1,78 м. Обернулся вокруг себя — видишь, что при падении непременно подомнешь под себя три елки и пять берез. Следовательно, на гектаре три тысячи стволов елового подроста и пять тысяч подрастающих берез. Если вам трудно представить, как вы пьяный валяетесь по кустам или ваш рост далек от идеала, можете крутить вокруг себя рейку аналогичной длины, а еще лучше приспособьте для этого дела телескопическую удочку. Впрочем, навык приобретается быстро.

В чем же секрет? Да все просто: Pi*r^2 => 3.14*1.78*1.78 ≈ 10 кв. метров. Гектар есть 10 000 кв. метров, а следовательно наша круговая площадка есть тысячная часть гектара.

Гораздо сложнее определять не количество, а возраст подроста. Если у сосны еще можно быстро подсчитать количество мутовок, примерно соответствующее числу прожитых лет

102_4702

то с елкой уже сложнее, мутовки у нее выражены гораздо хуже

102_4754
А у лиственных вообще хрен возраст определишь. Разве что по числу побегов или годовым кольцам, но все это разовые замеры. Обычно прикидываешь зависимость возраста от высоты для нескольких модельных стволиков, и далее интерполируешь сотни и тысячи наблюдений.  Ценность таких данных сами можете себе представить. С другой стороны, разве можно получить бессмысленные данные иначе как занимаясь бессмысленным делом?

Очередной день рождения молодой березки — место нарастания нового побега.

108_5032

Нельзя забывать о том, что для сосны и елки подчас не столь важен возраст и количество, сколько жизненное состояние. Определяется оно просто. Подходите к дереву:

108_4994

И делаете так:

108_4995

Еще раз продемонстрирую. Подходите к дереву:

108_5026

Хуяк!

108_5028

А далее руководствуетесь вот этой схемой определения жизненного состояния:

shema

При планировании подобных исследований, особое внимание следует уделить времени проведения работ. В условиях Северо-Запада Русской равнины, сплошные рубки обычно приводят к повышению уровня грунтовых вод. Конечно, если вам предстоит работать преимущественно в скальных, лишайниковых или брусничных типах то все ок:

102_4673Но скорее всего, вам придется обследовать долгомошники, черничники и кисличники:

102_4757

Нетрудно догадаться, что если вы решите работать в этих местах в начале лета, вас непременно заебут комары. А если перенесете работы на осень — замучаетесь подсчитывать лиственные породы. Листопад у затененного подроста и подлеска начинается во второй половине августа, причем уже в двадцатых числах бывает трудно отличить осину от березы, и живую рябину от сухой ветки. Поэтому конец июля — начало августа — ваше все.

Не всегда разумно идти к рубке кратчайшим путем. Ведь срубленный лес как-то вывозили, а значит к любой рубке идет дорога. В каком она состоянии это уже отдельный вопрос.

102_4555

При подготовке маршрута, выбираете место наибольшей концентрации подходящих рубок, связанных между собой достаточными для неутомительного продвижения дорогами и потрясающие прогулки по лесной глуши вам гарантированы. Главное, что-бы погода была не как в это лето: каждый день либо мелкий нудный дождь, либо грозовые ливни.

102_4583

С другой стороны «полное отторжение от бреда нашего» вам гарантировано. Да и как может быть иначе в условиях, когда последние мировые новости узнаешь из лесохозяйственных столбиков?

108_4996

Да, дожди утомляют, но с другой стороны комаров и клещей мало. Зато много грибов, а брусники вообще как говна:

102_4553

И все же мне сказочно повезло. Окончание лета я встретил в Сланцевском районе. Дожди прекратились на целую неделю и все живое выползло погреться и просохнуть перед наступлением первых холодов.

Вылезли кистехвостки (Orgyia antiqua):

102_3369Вылезли семиточечные божьи коровки (Coccinella septempunctata):

108_4790

и разная другая живность

108_5033

Только гадюк стало гораздо меньше — весь август они ползали под ногами, что довольно сильно меня напрягало ибо змей я панически боюсь с раннего детства. Глядя на всю окружающую красоту, просто нельзя было не вспомнить, что даже живущий один год жук-навозник умеет ориентироваться по звездам, а я за четверть века так ничему и не научился.

dscn9008

Зато каждый вечер после работы, я выбирал наиболее живописное место, собирал дрова, набирал из ближайшего ручья или лужи воду, любуясь попутно великолепным закатом.

108_4964

Темнота стала наступать гораздо быстрее чем в начале лета. Я укладывал на свою лежанку рюкзак, разводил костер и устраивался поудобнее.

108_4905

Подогревал себе фасоли в помидорном соусе, кипятил крепкий чай и наливал маленькую рюмку водки

108_4907

После, выпив и закусив, откидывался на спину и закуривая, посылал огоньком сигареты сигналы в самые глубины млечного пути. У меня была своя маленькая программа «SETI» и звезды охотно мерцали мне в ответ. Так я и засыпал, без всякой палатки, укрываясь на ночь исключительно звездным небом. Утром меня ждал новый маршрут, днем — новые обследования, а вечером — новый уютный костер.

Однажды утром я проснулся от холода. Костер погас, ветер гнал кучевые облака и спешить мне было некуда. Лето закончилось, а вместе с ним завершились работы по оценке лесовозобновления на вырубках. Мне пора было возвращаться обратно — до конца полевых работ оставалось менее полутора месяцев. Вскипятив себе чаю я собрал свой нехитрый скарб и закопав кострище, направился в сторону ближайшей дороги.
108_5040

С кем не бывает

Дело было так. Стою на остановке в Тосно, никого не трогаю, жду свой пазик в деревню. Вдруг, чувствую в затылке предательски закололи теплые иголки, в глазах потемнело и ноги потеряли силу как прошлогодний агар-агар. Ну все, думаю, пизда пришла. Тут бы не валиться мешком на заплеванный асфальт, сесть на лавку, принять косоносную с достоинством. А вот хрен там. Все лавки бабками заняты, хули что семь утра на дворе. К тому же дико потянуло блевать, а я ввиду врожденной интеллигентности на остановках блевать не привык, поэтому собрав остатки сил утащил свое туловище за угол и повинуясь окончательной страсти перед закрытой дверью «Евросети»изверг из себя в урну следующее:

Модель Лотки-Вольтерра, хоть и является сугубо теоретической, однако в утрированном виде описывает реальные кривые видового разнообразия, что подтверждается авторами, фамилии которых я сейчас, в таком состоянии и не вспомню. Но дело не в этом. Дело в кривых изменения численности популяций этой модели.

Окажись вы на моем месте тогда, наверняка бы все уже поняли, но в то утро божественные пиздюли предназначались мне в одно ебло, а потому придется напомнить о том, что видовое разнообразие и проективное покрытие живого напочвенного покрова связаны между собой примерно как синусоида с косинусоидой (пример грубый но наглядный). Сущность этой взаимосвязи проста: растительное сообщество есть диссипативная структура с присущей ей зависимостью структурных преобразований от интенсивности проходящего через нее потока энергии. Об этом еще в «Полевой геоботанике» писано, нехуй тут рассусоливать. Увеличение потока энергии приводит к повышению сложности системы, и обратно.

Сложность живого напочвенного покрова слагается из двух факторов: видового разнообразия и проективного покрытия. Тут, следовало бы упомянуть о важности видовой изменчивости, особенности проективного покрытия как критерия оценки и хуево проработанных концепциях вида вообще, но не до того поверьте, когда с незрячими глазами блюешь перед урной «Евросети».

Итак, количество видов и проективное покрытие. Первое не имеет верхнего предела, во всяком случае в существующей парадигме. Проективное покрытие, напротив, не может превышать ста процентов, а все возгласы о перекрытиях можно вертеть на ботаническом хую, ибо при желании вместо проективного покрытия можно рассмотреть его божественный аналог — биомассу и тут же убедиться, что рост ее ограничен физическим пространством. Короче, Склифософский: оба фактора влияют на сложность структуры живого напочвенного покрова, но раз уж область значений функции изменения проективного покрытия от объема поступающей энергии ограничена, то за ее правым пределом (за левым как вы понимаете живого напочвенного покрова вообще нет) сложность структуры зависит исключительно от видового разнообразия. Внутри области значений функции изменения проективного покрытия влияние видового разнообразия на сложность структуры незначительно при низком проективном покрытии, однако возрастает, при покрытии высоком. Проективное же покрытие, напротив по мере возрастания вносит все меньший вклад в увеличение сложности. Говоря языком Гете: «средь пышных травостоев примат разнообразья и похуй густота его сложенья, но средь редин пустынных, обилие лишь важно и до пизды нам все разнообразье».

А вот и она, великая секунда откровения: одна из немногих вещей, за которые я люблю жизнь во всех ее проявлениях. Вы только посмотрите как до кровавых мозолей на глазах похожи кривые Лотки-Вольтерра на кривые изменения видового разнообразия и обилия видов в живом напочвенном покрове! Конечно же, похожесть еще ни о чем не говорит, не тычьте художника в мольберт. Однако, в потенции, это новый взгляд на оценку структурных изменений экосистемы, включая ее животный компонент. Судите сами: те же два параметра. Количество хищников ограничено и не может превышать некоторого предела, после которого эти мудаки выжрут все и подохнут от голода.  Количество жертв тоже не может расти бесконечно, однако в рамках системы, с наличием хищника верхней границей их роста можно пренебречь.  Примитивно говоря: может быть очень много мышей и мало лисиц, но очень много лисиц и мало мышей быть не может, ибо жрать нечего.

Сразу же напрашивается сравнение проективного покрытия с хищником. Юморная, конечно, аналогия, но напомните-ка мне, а не Тильман ли развивал гипотезу о снижении видового разнообразия за счет усиления доминантной роли нескольких видов? И в чем кроется наша уверенность в том, что мы не спутали в очередной раз повод и причину происходящих процессов?

Тут-то меня и отпустило.

Математическая формализация единиц растительного покрова

Математическая формализация единиц растительного покрова

В основе «классических» методов классификации растительного покрова (Александрова, 1969) положены принципы булевой логики, которая опирается на следствие аддитивного свойства множеств (образование непересекающихся подмножеств при делении множества).

Для сложно устроенных (Растригин, 1981) природных систем, характерна не аддитивность, а эмергентность признаков.  Пренебрежение этим фактом ведёт к тому, что растительность внутри синтаксонов недостаточно охарактеризована, либо число синтаксонов неоправданно велико.

Используемые классификации не годятся для количественного представления выраженности тех или иных синтаксонов, что является тормозом для изучения структуры и динамики растительности. Требуется метод разделения растительного покрова на математически формализованные единицы.

Метод классификации растительности, который я предлагаю построен на обобщённом математическом аппарате теории множеств. Характеристика синтаксонов базируется на теории нечётких множеств (Заде, 1976).

Растительное сообщество представляет собой конечную группу, в связи с чем, признается дискретность пространственных границ. В тоже время, растительное сообщество не является примером непрерывного множества, поэтому описать его границу непрерывной, всюду дифференцируемой кривой невозможно. Таким образом, пространственные границы дискретны, но средствами эвклидовой геометрии выразить их невозможно (псевдоконтинуум).

Пространственные границы формализованы как мажорирующий контур растений. Если представить, что для каждой клетки растения характерны три координаты положения и координата времени, то мажорирующий контур будет проходить через клетки с максимальным значением координат. В самом простом случае это будет контур с параметрами равными максимальной высоте, длине и ширине растения, изменяющийся со временем, но сохраняющийся до момента гибели последней особи. В общем же случае, мажорирующий контур представляет собой объект с фрактальными границам.

Биологической основой новой классификации является трансформированный эколого-доминантный метод разделения растительного покрова (Александрова, 1969). Наличие эдификаторных свойств разной силы предполагается у всех особей сообщества. Основанием для выделения единиц растительности является степень обилия видов или групп видов. Она выражается через объем, занимаемый видами в пространстве (заполненность мажорирующего контура).

Основной единицей растительного покрова является специалитет – группа растений одного вида, целиком занимающая в пространстве объём своего мажорирующего контура.

Каждый специалитет обладает свойством истинности, выражающим степень его принадлежности к тому или иному синтаксону. Истинность характеризует степень заполненности мажорирующего контура органами растений. Примером абсолютно истинного  специалитета (истинность равна 1) можно считать накипной лишайник Rhizocarpon geographicum (L.) DC.:

IMG_1332

 

Большинство специалитетов имеет значительно меньшую истинность.  Так расчётная истинность еловых специалитетов на Северо-Западе России составляет в среднем 0,001-0,003.

Специалитеты объединяются в группы. Группы — это комплекс специалитетов в границах мажорирующего контура доминантного специалитета. Во многом этот класс напоминает эколого-ценотическую группу или тип леса в лесной типологии (Федорчук и др., 2005). В естественных лесах Северо-Запада России встречаются лишайниковая, кустарничковая, мелкотравная, неморальная, сфагновая, багульниковая, долгомошная, болотнотравяная, таволжная и приручейная группы (Голубев, 2012). Луга представлены насыпной, влажнозлаковой, злаковой и травяной группами (на основе данных: Нешатаев, Егоров, 2006). Поскольку мажорирующие контуры специалитетов (в том числе доминирующих) пересекаются, зачастую наблюдается пересечение групп.

Группы формируют формы. Формы — комплекс групп, занимающих в пространстве объем, ограниченный мажорирующим контуром групп с единой жизненной формой доминантов. Выделены древесные, кустарниковые, кустарничковые, травяные, моховые, лишайниковые, водорослевые, лиановые, подушковые и гетеротрофные формы.

Если особь вида s одновидового сообщества S={s1, s2, s3,…, sn} представить как множество клеток с параметрами: длина, ширина, высота, время s={(x1, y1, z1, t1) , (x2, y2, z2, t2),…, (xn, yn, zn, tn)}, то понятие специалитета можно формализовать как множество Sp={s1, s2, s3,…, sn}, такое, что:

Дальше в исходном тексте шли формулы, а так-же формализация понятий группы и формы. Но за давностью лет информация проебалась. Если не ошибаюсь, полный текст опубликован в сборнике материалов конференции «Математическое моделирование в экологии», что проходила в Пущино между 2010 и 2014 годами. Там же есть и недостающие формулы. Я их здесь публиковать не буду, поскольку, во-первых, у меня их почему-то нет под рукой, во-вторых, я сейчас еду в уазике и по тряской дороге пью пиво, а в-третьих, хуйню эту все-равно никто читать не будет, так что и так сойдет.

Допустимые пределы использования теории нечетких множеств в экологическом моделировании

Описаны допустимые пределы использования теории нечетких множеств, обусловленные синергетическим эффектом в природных системах

1. Введение

Успешное применение теории нечетких множеств (Заде, 1976) в технике привело к возрастанию популярности нечетких вычислений в других сферах, в том числе в экологическом моделировании. Моделирование растительного покрова с помощью нечетких множеств позволяет объединить континуальный и дискретный подход в рамках одной модели (Голубев, 2012). Это создает ошибочное ощущение универсальности данного подхода. Допустимые пределы использования теории нечетких множеств, как и факторы, обуславливающие эти пределы до сих пор не определены.

2. Применение теории нечетких множеств

Теория нечётких множеств представляет собой развитие классической теории множеств. В отличии от последней, в теории нечетких множеств один элемент может принадлежать одновременно нескольким множествам. При этом степень принадлежности его к тому или иному множеству выражается при помощи функции принадлежности (характеристической функции). Значение характеристической функции обычно является дробным числом в диапазоне от 0 (элемент абсолютно не принадлежит множеству) до 1 (абсолютная принадлежность элемента множеству) (Заде, 1976).

В качестве примера применения теории нечетких множеств в экологических моделях можно привести нечеткую типологию лесов Северо-Запада России (Голубев, 2012). Данная типология основана на новейших лесотипологических исследованиях (Федорчук и др., 2005) и принципах классификации нечетких множеств (Заде, 1976). Серии типов леса в типологии выделяются на основе обилия групп индикаторных видов. Для каждой серии характерна индикаторная группа с уникальным набором видов. Растительное сообщество может одновременно относиться к одной (истинной) серии или нескольким (переходным) сериям. Истинная серия характеризуется присутствием только одной индикаторной группы с суммарным проективным покрытием травяно-кустарничкового и мохово-лишайникового яруса 100 %. Показатель истинности серии рассчитывается как мера количественного сходства (например, коэффициент Чекановского (Словарь…, 1989)) между рассматриваемым растительным сообществом и истинной серией типа леса.

Одним из ключевых преимуществ такой типологии является возможность обоснованной интерполяции данных. Зная значение индикационных параметров (например, агрохимических почвенных показателей) в истинных типах леса (или типах с известной истинностью), мы можем рассчитать эти параметры для произвольного участка леса на основе его нечетких лесотипологических показателей (близости к тому или иному типу леса). Результаты расчетов будут содержать погрешность, иногда значительно искажающую результаты. Основной причиной данной погрешности является неприменимость теории нечетких множеств к описании природных систем, которая проявляется в возникновении синергетического эффекта при объединении различных множеств природных объектов.

3. Синергетический эффект при объединении нечетких множеств

Синергетический эффект — эффект взаимодействия нескольких систем, характеризующийся тем, что их совместное действие существенно превосходит простую сумму действий каждого отдельного компонента (Жилин, 2004). Частным случаем синергетического эффекта является эмергентность — свойство факторов образовывать при совместном влиянии новый фактор, отличный от исходных и от их суммарной мощности.

В нечетком типологическом ряду «лишайниковая-кустарничковая-мелкотравная» (серии типов леса) (Голубев, 2012), кустарничковая серия не является простой механической смесью лишайниковой и мелкотравной серий. В связи с этим индикационные показатели, рассчитанные на основе близости кустарничкового типа леса к лишайниковому и мелкотравному будут содержать определенную ошибку. Величина этой ошибки может быть использована как показатель мощности синергетического эффекта: чем больше расхождение реальных данных с расчетными, тем менее сообщество похоже на механическую смесь других растительных сообществ (и тем менее применимы к нему разработанные для других типов леса хозяйственные мероприятия).

4. Расширение пределов использования теории нечетких множеств

Из приведенного примера следует, что теорию нечетких множеств допустимо применять лишь для систем с незначительным синергетическим эффектом. С более примитивной лесохозяйственной точки зрения это устранимо за счет введения поправочных коэффициентов, рассчитанных указанным методом для каждого из типов леса. В то же время, невозможно построение на основе теории нечетких множеств аппарата, пригодного для анализа состояний детерминированного хаоса в природных системах.

Математическим аппаратом, расширяющим теорию множеств может служить аппарат субъективных вычислений, в котором изменение характеристической функции принадлежности элемента к одному из двух подмножеств не влияет на характеристическую функцию принадлежности элемента ко второму подмножеству.

5. Выводы

Применение теории нечетких множеств допустимо в системах с пренебрежимо малым синергетическим эффектом объединения систем. Ограниченно эту теорию допустимо использовать в практической деятельности с использованием поправочных коэффициентов на синергетический эффект (эти же коэффициенты возможно использовать в качестве меры тесноты взаимосвязи элементов в растительном сообществе). Для характеристики состояний детерминированного хаоса в экологических моделях применение теории нечетких множеств недопустимо.